Answer:
1.0s
Explanation:
distance = 1/2 × acceleration × time2 + intial speed × time
The gravitational acceleration of a planet is proportional to the planet's mass, and inversely proportional to square of the planet's radius.
So when you stand on the surface of this particular planet, you feel a force of gravity that is
(1/2) / (3²)
of the force that you feel on the surface of the Earth.
That's <em>(1/18)</em> as much as on Earth.
The acceleration of gravity there would be about <em>0.545 m/s²</em>.
This is about 12% less than the gravity on Pluto.
Answer:
10.23m/s^2
Explanation:
GIven data
mass of elevator = 2125 kg
Force= 21,750 N
Required
The maximum acceleration upward
F= ma
a= F/m
a=21,750/2125
a= 10.23m/s^2
Hence the acceleration is 10.23m/s^2
Answer:
4.08 s
Explanation:
Let the passenger took "t" time to catch the train
so in this case the total distance moved by the train + 5 m = total distance moved by the passenger
so we will have
distance moved by train is given as

also the distance moved by passenger

so we will have



t = 4.08 s
ANSWER:
D) centripetal acceleration.
STEP-BY-STEP EXPLANATION:
When a body performs a uniform circular motion, the direction of the velocity vector changes at every instant. This variation is experienced by the linear vector, due to a force called centripetal, directed towards the center of the circumference that gives rise to the centripetal acceleration.
Therefore, the answer is centripetal acceleration.