Answer:
Part a)

Part b)
T = 4.68 s
Explanation:
Part a)
Shell is fired at speed of 40 m/s at angle of 35 degree
so here we have


since gravity act opposite to vertical speed of the shell so at the highest point of its trajectory the vertical component of the speed will become zero
so at the highest point the speed is given

Part b)
After completing the motion we know that the displacement of the object will be zero in Y direction
so we have




Answer:

Explanation:
Given that,
The energy of the microwave oven is
.
We need to find the wavelength of these photons.

The energy of a wave is given by :

Put all the values,

So, the wavelength of these photon is
.
Answer:
1) P₁ = -2 D, 2) P₂ = 6 D
Explanation:
for this exercise in geometric optics let's use the equation of the constructor
where f is the focal length, p and q are the distance to the object and the image, respectively
1) to see a distant object it must be at infinity (p = ∞)
q = f₁
2) for an object located at p = 25 cm
We can that in the two expressions we have the distance to the image, this is the distance where it can be seen clearly in general for a normal person is q = 50 cm
we substitute in the equations
1) f₁ = -50 cm
2)
= 0.06
f₂ = 16.67 cm
the expression for the power of the lenses is
P = 
where the focal length is in meters
1) P₁ = 1/0.50
P₁ = -2 D
2) P₂ = 1 /0.16667
P₂ = 6 D
Answer:
The impulse on the object is 60Ns.
Explanation:
Impulse is defined as the product of the force applied on an object and the time at which it acts. It is also the change in the momentum of a body.
F = m a
F = m(
)
⇒ Ft = m(
-
)
where: F is the dorce on the object, t is the time at which it acts, m is the mass of the object,
is its initialvelocity and
is the final velocity of the object.
Therefore,
impulse = Ft = m(
-
)
From the question, m = 3kg,
= 0m/s and
= 20m/s.
So that,
Impulse = 3 (20 - 0)
= 3(20)
= 60Ns
The impulse on the object is 60Ns.
<span>Solar panels convert light energy from sunlight into electricity energy , Metalloid is most likely used in solar panels The answer is : </span> A metalloid is used because it is a semiconductor and can become more conductive when more light shines on it. Metalloids are shiny,<span> semiconductive and they are brittle.</span>