Answer:
force
Explanation:
If you need explanation lmk and if that's not the answer lmk as well so i can think of other one's hope it helps
Answer:
a) v_{p} = 2.83 m / s
, b) 50.5º north east
Explanation:
This is a vector problem.

The speed of the ball with respect to the ground is the speed of the ball with respect to Mia plus the speed of Mia with respect to the ground
To make the sum we decompose the speed of the ball in its components
The angle of 30 east of the south, measured from the positive side of the x axis is
θ = 30 + 270 = 300
=
cos 300
= v_{b} sin. 300
v_{bx} = 3.60 cos 300 = 1.8 m / s
v_{by} = 3.60 sin 300 = -3,118 m / s
Let's add speeds on each axis
X axis
vₓ = v_{bx}
vₓ = 1.8 m / s
Y Axis
= v1 - vpy
v_{y} = 5.30 - 3.118
v_{y} = 2.182 m / s
The magnitude of the velocity can be found using the Pythagorean theorem
= √ (vₓ² + v_{y}²)
v_{p} = √ (1.8² + 2.182²)
v_{p} = 2,829 m / s
v_{p} = 2.83 m / s
b) for direction use trigonometry
tan θ =
/ vₓ
θ = tan ⁺¹ v_{y} / vₓ
θ = tan⁻¹ 2.182 / 1.8
Tea = 50.48º
This address is 50.5º north east
Answer:
1/9 of that just outside the smaller sphere
Explanation:
The electric field strength produced by a charged sphere outside the sphere itself is equal to that produced by a single point charge:

where
k is the Coulomb's constant
Q is the charge on the sphere
r is the distance from the centre of the sphere
Calling R the radius of the first sphere, the electric field just outide the surface of the first sphere is

The second sphere has a radius which is 3 times that of the smaller sphere:

So, the electric field just outside the second sphere is

So, the correct answer is 1/9.
Answer:
the sum of potential and kinetic energy
Explanation:
Mechanical energy is found in machines and humans.It is a sum of kinetic energy and potential energy.Mechanical energy is constant
Work= force x displacement :)