Impulse = change of momentum
Impulse = 45 x 6 = 270 Ns
Answer:
T₂ = 95.56°C
Explanation:
The final resistance of a material after being heated is given by the relation:
R' = R(1 + αΔT)
where,
R' = Final Resistance = 207.4 Ω
R = Initial Resistance = 154.9 Ω
α = Temperature Coefficient of Resistance of Tungsten = 0.0045 °C⁻¹
ΔT = Change in Temperature = ?
Therefore,
207.4 Ω = 154.9 Ω[1 + (0.0045°C⁻¹)ΔT]
207.4 Ω/154.9 Ω = 1 + (0.0045°C⁻¹)ΔT
1.34 - 1 = (0.0045°C⁻¹)ΔT
ΔT = 0.34/0.0045°C⁻¹
ΔT = 75.56°C
but,
ΔT = Final Temperature - Initial Temperature
ΔT = T₂ - T₁ = T₂ - 20°C
T₂ - 20°C = 75.56°C
T₂ = 75.56°C + 20°C
<u>T₂ = 95.56°C</u>
In the process of peppering the question with those forty (40 !) un-necessary quotation marks, you neglected to actually show us the illustration. So we have no information to describe the adjacent positions, and we're not able to come up with any answer to the question.
Answer:
θ = Cos⁻¹[A.B/|A||B|]
A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result
Explanation:
We can use the formula of the dot product, in order to find the angle between two non-zero vectors. The formula of dot product between two non-zero vectors is written a follows:
A.B = |A||B| Cosθ
where,
A = 1st Non-Zero Vector
B = 2nd Non-Zero Vector
|A| = Magnitude of Vector A
|B| = Magnitude of Vector B
θ = Angle between vector A and B
Therefore,
Cos θ = A.B/|A||B|
<u>θ = Cos⁻¹[A.B/|A||B|]</u>
Hence, the correct answer will be:
<u>A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result</u>
This answer is true the earth always stays at one speed