Answer:
It could affect how far the projectile travels
Explanation:
Facing Uphill: Moves less far
Downhill: Moves further
Answer:
- the capacity of the pump reduces by 35%.
- the head gets reduced by 57%.
the power consumption by the pump is reduced by 72%
Explanation:
the pump capacity is related to the speed as speed is reduces by 35%
so new speed is (100 - 35) = 65% of orginal speed
speed Q ∝ N ⇒ Q1/Q2 = N1/N2
Q2 = (N2/N1)Q1
Q2 = (65/100)Q1
which means that the capacity of the pump is also reduces by 35%.
the head in a pump is related by
H ∝ N² ⇒ H1/H2 = N1²/N2²
H2 = (N2N1)²H1
H2 = (65/100)²H1 = 0.4225H1
so the head gets reduced by 1 - 0.4225 = 0.5775 which is 57%.
Now The power requirement of a pump is related as
P ∝ N³ ⇒ P1/P2 = N1³/N2³
P2 = (N2/N1)³P1
H2 = (65/100)²P1 = 0.274P1
So the reduction in power is 1 - 0.274 = 0.725 which is 72%
Therefore for a reduction of 35% of speed there is a reduction of 72% of the power consumption by the pump.
Answer:
Didn't do what, there are no women as answers. Contact me and give me the women.
Explanation:
Answer:
It is a non profit organization that dedicates to licensing professional engineers and surveyors
Explanation:
Answer:
B. The thickness of the heated region near the plate is increasing.
Explanation:
First we know that, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. The fluid is often slower due to the effects of viscosity. Advection i.e the transfer of heat by the flow of liquid becomes less since the flow is slower, thereby the local heat transfer coefficient decreases.
From law of conduction, we observe that heat transfer rate will decrease based on a smaller rate of temperature, the thickness therefore increases while the local heat transfer coefficient decreases with distance.