Answer:
The maximum emf that can be generated around the perimeter of a cell in this field is 
Explanation:
To solve this problem it is necessary to apply the concepts on maximum electromotive force.
For definition we know that

Where,
N= Number of turns of the coil
B = Magnetic field
Angular velocity
A = Cross-sectional Area
Angular velocity according kinematics equations is:



Replacing at the equation our values given we have that




Therefore the maximum emf that can be generated around the perimeter of a cell in this field is 
Answer: a.
Explanation: i have done this before .. hope this helps (⌐■_■)
<span> 1 mi = 1.609 km
so X mi/hr = 1.609 * X km/hr hope this helps!!</span>
By the law of universal gravitation, the gravitational force <em>F</em> between the satellite (mass <em>m</em>) and planet (mass <em>M</em>) is
<em>F</em> = <em>G</em> <em>M</em> <em>m</em> / <em>R </em>²
where
<em>• G</em> = 6.67 × 10⁻¹¹ m³/(kg•s²) is the universal gravitation constant
• <em>R</em> = 2500 km + 5000 km = 7500 km is the distance between the satellite and the center of the planet
Solve for <em>M</em> :
<em>M</em> = <em>F R</em> ² / (<em>G</em> <em>m</em>)
<em>M</em> = ((3 × 10⁴ N) (75 × 10⁵ m)²) / (<em>G</em> (6 × 10³ kg))
<em>M</em> ≈ 2.8 × 10¹⁴ kg