Answer:
The amount of NO₂ that can be produced 8.533 g
Explanation:
According to question
2 NO(g) + O₂(g) → 2 NO₂(g)
Given
Moles of nitrogen monoxide = 0.377
Moles of oxygen = 0.278
Since 'NO' is the limiting reagent according to this ratio.
According to equation
2 moles NO reacts to form 2 moles NO₂
So, 0.1855 moles NO give = 0.1855 moles of NO₂
Mass of 1 mole NO₂ = 46 g/mole
Mass of 0.1855 moles = 46 x 0.1855 = 8.533 g
Answer:
B. They are dimensionless ratios of the actual concentration or pressure divided by standard state concentration, which is 1 M for solutions and 1 bar for gases.
Explanation:
Activity of a substance is defined as the ratio of an effective concentration or an effective pressure to a standard state pressure or a standard state pressure. It is usually a unit less ratio.
Concentrations in an equilibrium constant are really dimensionless ratios of actual concentrations divided by standard state concentrations. Since standard states are 1 M for solutes, 1 bar for gases, and pure substances for solids and liquids, these are the units to be used.
Hence, activity is a fudge factor to ideal solutions that correct the true concentration. Activity of a gas and solute concentration is a ratio with no unit.
Answer:
Kinetic energy decreases as temperature decreases.
Explanation:
From the description that the system at 80°C has longer arrows, or move faster than the system at 20°C, having shorter actors indicating a slower motion, we can conclude that the kinetic energy of a body depends on its temperature.
If the system at 80°C shows a greater kinetic energy (faster motion of particles) than the system at 20°C, it then implies that decreasing the temperature of the body decreases its kinetic energy.
Answer:
The answer is Kr (Krypton).
This is because krypton has an electronic configuration of:
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6
Taking note of the sequence of electronic configuration:
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s
It can be seen that Kyrpton's electronic configuration finishes just before the 5s subshell. Therefore, the noble gas notation for an element with valence electrons in the 5s subshell can use [Kr] as a shortcut to denote its electronic configuration. For example:
If an element has 1 valence electron in the 5s subshell, the noble gas notation will be:
[Kr] 5s1
Explanation: