Answer: D) All of the above
Explanation:
Burn rate can be affected by all of the above reasons as, variation in chamber pressure because the pressure are dependence on the burn rate and temperature variation in initial gain can affect the rate of the chemical reactions and initial gain in the temperature increased the burning rate. As, gas flow velocity also influenced to increasing the burn rate as it flowing parallel to the surface burning. Burn rate is also known as erosive burning because of the variation in flow velocity and chamber pressure.
Answer:
The temperature attains equilibrium with the surroundings.
Explanation:
When the light bulb is lighted we know that it's temperature will go on increasing as the filament of the bulb has to constantly dissipates energy during the time in which it is on. Now this energy is dissipated as heat as we know it, this heat energy is absorbed by the material of the bulb which is usually made up of glass, increasing it's temperature. Now we know that any object with temperature above absolute zero has to dissipate energy in form of radiations.
Thus we conclude that the bulb absorbs as well as dissipates it's absorbed thermal energy. we know that this rate is dependent on the temperature of the bulb thus it the temperature of the bulb does not change we can infer that an equilibrium has been reached in the above 2 processes i.e the rate of energy absorption equals the rate of energy dissipation.
Steady state is the condition when the condition does not change with time no matter whatever the surrounding conditions are.
Answer:
q1q1 ⇒ 01
Explanation:
The outputs of a positive edge triggered register will match the inputs after a rising clock edge.
q1q1 ⇒ 01 . . . . matching d1d0 = 01
Answer:
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²
Explanation:
We are given;
T∞ = 70°C.
Inner radii pipe; r1 = 6cm = 0.06 m
Outer radii of pipe;r2 = 6.5cm=0.065 m
Electrical heat power; Q'_s = 300 W
Since power is 300 W per metre length, then; L = 1 m
Now, to the heat flux at the surface of the wire is given by the formula;
q'_s = Q'_s/A
Where A is area = 2πrL
We'll use r2 = 0.065 m
A = 2π(0.065) × 1 = 0.13π
Thus;
q'_s = 300/0.13π
q'_s = 734.56 W/m²
The differential equation and the boundary conditions are;
A) -kdT(r1)/dr = h[T∞ - T(r1)]
B) -kdT(r2)/dr = q'_s = 734.56 W/m²