Answer:
<em>yh thats true lol, ty for that very interesting fact</em>
Answer:
872.28 kJ/mol
Explanation:
The heat released is:
ΔH = C*ΔT
where ΔH is the heat of combustion, C is the heat capacity of the bomb plus water, and ΔT is the rise of temperature. Replacing with data:
ΔH = 9.47*5.72 = 54.1684kJ
A quantity of 1.922 g of methanol in moles are:
moles = mass / molar mass
moles = 1.992/32.04 = 0.0621 mol
Then the molar heat of combustion of methanol is:
ΔH/moles = 54.1684/0.0621 = 872.28 kJ/mol
Endothermic reactions, on the other hand, absorb heat and/or light from their surroundings. For example, decomposition reactions are usually endothermic. In endothermic reactions, the products have more enthalpy than the reactants. Thus, an endothermic reaction is said to have a positive<span> enthalpy of reaction. This means that the energy required to break the bonds in the reactants is more than the energy released when new bonds form in the products; in other words, the reaction requires energy to proceed.</span>