"Maritime" air . . . . . always high relative humidity
"Polar" air . . . . . always cold
"Maritime polar" air . . . . . choice-A
Answer:
250 m/min down the road
Explanation:
Velocity is equivalent to speed but it considers the direction of the object. Velocity is also calculated by dividing the distance travelled by time. Therefore,
where d and t are distance and time respectively. Given that d is given as 350 m and t is 1.4 s then by substitution
and the direction is down the road.
Velocity is 250 m/min down the road
Answer: a. 667N
b. 665N
c. 54.5N
Explanation:
a) on the surface of the earth
W = mg
W = 68 × 9.81
= 667N
b) at the top of Everest (8848 m above sea level).
W =mg × R²/(R + H)²
W = 667 × [6378²/(6378 + 8.848)²
W = 665N
c) has 2 1/2 times the radius of the earth
W = mg × R²/(R + H)²
W = 667 × R²/(R + 2.5R)²
W = 54.5N
Answer:
The combined velocity is 8.61 m/s.
Explanation:
Given that,
The mass of a truck, m = 2800 kg
Initial speed of truck, u = 12 m/s
The mass of a car, m' = 1100 kg
Initial speed of the car, u' = 0
We need to find the combined velocity the moment they stick together. Let it is V. Using the conservation of momentum.

So, the combined velocity is 8.61 m/s.