Answer:
1 True
2. True
3. True
4. True
5. False
Explanation:
1. Hypochlorous acid (HOCl) is a weak acid that forms when chlorine dissolves in water, and is partially dissociated, forming hypochlorite. HOCl is considered a strong oxidizing agent responsible for the killing action of germs in chlorine solutions.
2. Acetic acid is also known as ethanoic acid. It has a distinctive sour taste and pungent smell, and is generally considered a weak acid. in a concentrated form, acetic acid can be corrosive.
3/4 . Methylene chloride is an organochloride compound with the formula CH2Cl2. It is a colorless, volatile liquid with a moderately sweet aroma is widely used as a solvent. It is normally stable, non-flammable and non-explosive when mixed with air at temperatures below 100 °C, but its vapor is flammable only when present in relatively high concentrations of about 14% to 22% in air. Research shows that it is very much possibly carcinogenic, and it has been linked to cancer of the lungs, liver, pancreas, breast cancer and salivary gland cancer in laboratory animals.
5. Laboratory and medical waste are not to be disposed in the trash with regular wastes, as they are potentially toxic. Special disposal methods and agencies exists to take away such wastes.
Answer:
Se aplica la leyes d ellos gases ideales para esto se convierten las unidades de Presión en atmósferas y Temperatura a Kelvin y si no se tiene el volumen el volumen equivale a 22.4Litros
Explanation:
A. how fast something moves in a specific direction
Answer:
Covalent compounds have low forces of attraction between their molecules (i.e. one H2O molecule isn't as attracted to another H2O molecule than the oppositely charges ions are in an ionic compound). Little energy is needed to break their bonds, therefore they have low meting points. Hope this is what you are looking for!
Explanation:
Brainliest please?
Answer:
ΔHorxn = - 11.79 KJ
Explanation:
2 SO 2 ( g ) + O 2 ( g ) ⟶ 2 SO 3 ( g )
The standard enthalpies of formation for SO 2 ( g ) and SO 3 ( g ) are Δ H ∘ f [ SO 2 ( g ) ] = − 296.8 kJ / mol Δ H ∘ f [ SO 3 ( g ) ] = − 395.7 kJ / mol
From the reaction above, 2 mol of SO2 reacts to produce 2 mol of SO3. Assuming ideal gas behaviour,
1 mol = 22.4l
x mol = 2.67l
Upon cross multiplication and solving for x;
x = 2.67 / 22.4 = 0.1192 mol
0.1192 mol of SO2 would react to produce 0.1192 mol of SO3.
Amount of heat is given as;
ΔHorxn = ∑mΔHof(products) − ∑nΔHof(reactants)
Because O2(g) is a pure element in its standard state, ΔHοf [O2(g)] = 0 kJ/mol.
ΔHorxn = 0.1192 mol * (− 395.7 kJ / mol) - 0.1192 mol * ( − 296.8 kJ / mol)
ΔHorxn = - 47.17kj + 35.38kj
ΔHorxn = - 11.79 KJ