Answer:
2 moles N2⋅3 moles H21 Mole N2=6 moles H2
Explanation:
Answer:
Hydrogen
Explanation:
A reducing agent is a substance which gives up its electrons to become oxidized. Generally, metals are oxidized (reducing agents) while non-metals are reduced (oxidizing agents).
However, hydrogen which is a non-metal is usually oxidized in the presence of stronger oxidizing non-metals such as fluorine and oxygen.
Hydrogen thus, acts as a reducing agent by giving up its electrons to become oxidized. Even though among all non-metals, Hydrogen has the greatest potential to be oxidized, it is a poor reducing agent compared to reactive metals.
<u>Answer:</u> When the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The overall chemical reaction follows:

The intermediate balanced chemical reaction are:
(1)
(2)

The expression for enthalpy of the reaction follows:
![\Delta H^o_{rxn}=[1\times (\Delta H_1)]+[\frac{1}{2}\times (-\Delta H_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B1%5Ctimes%20%28%5CDelta%20H_1%29%5D%2B%5B%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%28-%5CDelta%20H_2%29%5D)
Hence, when the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.