Answer:
896 kJ
Explanation:
KInetic Energy = 1/2 m v^2
= 1/2 (1120)(40^2) = 896 000 J or 896 kJ
Answer:
Total momentum = 50kgm/s
Explanation:
<u>Given the following data;</u>
Mass, M1 = 5kg
Mass, M2 = 7kg
Velocity, V1 = 10m/s
Velocity, V2 = 0m/s (since it's at rest).
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.
Total momentum = M1V1 + M2V2
Substituting into the equation, we have;
Total momentum = 5*10 + 7*0
Total momentum = 50 + 0
<em>Total momentum = 50 kgm/s</em>
<em>Therefore, the total momentum of the bowling ball and the putty after they collide is 50 kgm/s. </em>
Since the electric field between the plates is constant, If the two plates are brought closer together, the potential difference between the two plates decreases
The relation between potential difference and the electric field is given by ΔV = E.d
Since the electric field is maintained constant, the potential difference is directly inversely proportional to the distance between the plates.
The potential difference between the plates will therefore likewise decrease if the distance between the plates is reduced, we will state in this case.
The energy required to move a unit charge, or one coulomb, from one point to the other in a circuit is measured as the potential difference between the two points. Potential difference is measured in volts or joules per coulomb.
Refer to more about the potential difference here
brainly.com/question/12198573
#SPJ4
Answer:
m = 95000 kg
Explanation:
Given that,
Net force acting on the house, F = 2850 N
Initial speed, u = 0
Final speed, v = 15 cm/s = 0.15 m/s
We need to find the mass of the house. Let the mass be m. We know that the net force is given by :
F = ma
Where
a is the acceleration of the house.
So,

So, the mass of the house is equal to 95000 kg.
None of these are a good definition; a good definition would be "the maximum velocity that an object can fall at." however the best answer out go those is c. the constant velocity of some falling objects.