Answer:
The final pressure is 2.25 atm or 1710 mm Hg
Explanation:
Step 1: Data given
The initial volume = 28.4 L
The initial pressure = 725 mm Hg ( = 725/760 atm) = 0.953947 atm
The initial temperature = 305 K
The new volume is 14.8 L
The new temperature = 375 K
Step 2: Calculate the new pressure
(P1*V1)/T1 = (P2*V2)/T2
⇒ with P1 = the initial pressure = 725 mmHg = 0.953947 atm
⇒ with V1 = the initial volume = 28.4 L
⇒ with T1 = The initial temperature = 305 K
⇒ with P2 = the new pressure = TO BE DETERMINED
⇒ with V2 = the new volume = 14.8 L
⇒ with T2 = the new temperature = 375 K
(0.953947 * 28.4)/305 = (P2 * 14.8)/375
P2 = 2.25 atm = 1710 mm Hg
The final pressure is 2.25 atm or 1710 mm Hg
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wtjfavyw
The activity series goes top to bottom, most active to least active elements, going: Li, K, Ba, Sr, Ca, Na, Mg, Mn, Zn, Fe, Cd, Co, Ni, Sn, Pb, H, Cu, Ag, Hg, Au.
Thus, your list of metals would go from most reactive to least reactive: Li, K, Mg, Zn, Fe, Cu, Au
Answer:
Group 8A
Explanation:
This is because the elements in Group 8A is stable, what I mean is this elements have the maximum number of electrons in there last orbit so they dont need to form any compund with any other element in the periodic table.
<em>HOPE</em><em> </em><em>THIS</em><em> </em><em>WILL</em><em> </em><em>HELP YOU</em><em /><em>❤️</em>