Answer:60 gm
Explanation:
Given
initial velocity of ball 
Force exerted by racquet 
time period of force 
final velocity of ball 
Racquet imparts an impulse to the ball which is given by



<span>Cytoplasm: <span>the entire contents of the cell, exclusive of the nucleus and bounded by the plasma membrane.
Hope this helped. :)</span></span>
To solve this we assume
that the gas inside the balloon is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 =284.15 x 2.50 / 303.15
<span>V2 = 2.34 L</span>
Kinetic energy = (1/2) (mass) (speed)²
BUT . . . in order to use this equation just the way it's written,
the speed has to be in meters per second. So we'll have to
make that conversion.
KE = (1/2) · (1,451 kg) · (48 km/hr)² · (1000 m/km)² · (1 hr/3,600 sec)²
= (725.5) · (48 · 1000 · 1 / 3,600)² (kg) · (km·m·hr / hr·km·sec)²
= (725.5) · ( 40/3 )² · ( kg·m² / sec²)
= 128,978 joules (rounded)
When the diver reaches maximum height, the upward velocity will be zero.
We shall use the formula
v^2 = u^2 - 2gh
where
v = 0 (velocity at maximum height)
u = 1.2 m/s, intial upward velocity
g = -9.8 m/s^2, gravitational acceleration (downward)
h = maximum height attained above the diving board.
Therefore
0 = 1.2^2 - 2*9.8*h
h = 1.2^2/(2*9.8) = 0.0735 m
Answer: 0.074 m (nearest thousandth)