Answer : 0.026 moles of oxygen are in the lung
Explanation :
We can solve the given question using ideal gas law.
The equation is given below.

We have been given P = 21.1 kPa
Let us convert pressure from kPa to atm unit.
The conversion factor used here is 1 atm = 101.3 kPa.

V = 3.0 L
T = 295 K
R = 0.0821 L-atm/mol K
Let us rearrange the equation to solve for n.



0.026 moles of oxygen are in the lung
I think the answer is A but I could be wrong
Answer: C) the values of Kb and Kw
Explanation: i just took the test
Answer
the first one (im pretty sure)
Explanation:
Answer:
10−8 M.
Explanation:
In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × In this problem we are given pH and asked to solve for the hydrogen ion concentration. Using the equation, pH = − log [H+] , we can solve for [H+] as,
− pH = log [H+] ,
[H+] = 10−pH,
by exponentiating both sides with base 10 to "undo" the common logarithm. The hydrogen ion concentration of blood with pH 7.4 is,
[H+] = 10−7.4 ≈ 0.0000040 = 4.0 × 10−8 M.