The value of v; initial velocity is determined as, v = h/t + gt.
<h3>What is initial velocity of an object?</h3>
The initial velocity of an object is the velocity of the object before the effect of acceleration, which causes the change of velocity.
h = vt - gt²
to solve for v (the initial velocity) we will make v the subject of the formula.
h + gt² = vt
divide both sides of the equation by t
h/t + gt = v
Thus, the value of v; initial velocity is determined as, v = h/t + gt.
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
The Inertia is 22. 488 kg. m² and the speed just before it hits the ground is 6. 4 m/s
<h3>
How to determine the inertia</h3>
Using the formula:
I = 1/2 M₁R₁² + 1/2 M₂R₂²
Where I = Inertia
I = 1/2 * 0.810* (2. 60)² + 1/2 * 1. 58 * (5)²
I = 1/2 * 5. 476 + 1/2 * 39. 5
I = 2. 738 + 19. 75
I = 22. 488 kg. m²
To determine the block's speed, use the formula
v = 
v = 
v = 
v = 6. 4 m/s
Therefore, the Inertia is 22. 488 kg. m² and the speed just before it hits the ground is 6. 4 m/s
Learn more about law of inertia here:
brainly.com/question/10454047
#SPJ1
False because bases turn red litmus paper to blue and acids turn blue litmus paper red
Answer: analog-to-digital
Explanation: Analog-to-digital converters as the name implies simply refers to components which are used to convert continuous analog signals into a discrete analog outputs so they it can be read and processed by a microprocessor. The microprocessors are unable to depict and read analog signals which could be gathered from sound, light or water wave sources. This wave sources are then sampled, processed and sorted into levels by the analog-to-digital converter before being sent to the microprocessor so that the waves can be read.
Answer:
94.13 ft/s
Explanation:
<u>Given:</u>
= time interval in which the rock hits the opponent = 10 s - 5 s = 5 s
= distance to be moved by the rock long the horizontal = 98 yards
= displacement to be moved by the rock during the time of flight along the vertical = 0 yard
<u>Assume:</u>
= magnitude of initial velocity of the rock
= angle of the initial velocity with the horizontal.
For the motion of the rock along the vertical during the time of flight, the rock has a constant acceleration in the vertically downward direction.

Now the rock has zero acceleration along the horizontal. This means it has a constant velocity along the horizontal during the time of flight.

On dividing equation (1) by (2), we have

Now, putting this value in equation (2), we have

Hence, the initial velocity of the rock must a magnitude of 94.13 ft/s to hit the opponent exactly at 98 yards.