Complete Question:
A hollow cylinder with an inner radius of 4.0mm and an outer radius of 30mm conducts a 3.0-A current flowing parallel to the axis of the cylinder. If the current density is uniform throughout the wire, what is the magnitude of the magnetic field at a point 12mm from its center?
Answer:
The magnitude of the magnetic field = 7.24 μT
Explanation:
Inner radius, a = 4.0 mm = 0.004 m
Outer radius, b = 30 mm = 0.03 m
Radius, r = 12 mm = 0.012 m
let h² = b² - a²
h² = 0.03² - 0.004²
h² = 0.000884
Let d² = r² - a²
d² = 0.012² - 0.004²
d² = 0.000128
Current I = 3A
μ = 4π * 10⁻⁷
The magnitude of the magnetic field is given by:
![B = \frac{\mu I d^{2} }{2\pi r h^{2} } \\B = \frac{4\pi * 10^{-7} * 3* 0.000128^{2} }{2\pi *0.012* 0.000884^{2} }](https://tex.z-dn.net/?f=B%20%3D%20%5Cfrac%7B%5Cmu%20I%20d%5E%7B2%7D%20%7D%7B2%5Cpi%20r%20h%5E%7B2%7D%20%7D%20%5C%5CB%20%3D%20%20%5Cfrac%7B4%5Cpi%20%2A%2010%5E%7B-7%7D%20%20%20%2A%203%2A%200.000128%5E%7B2%7D%20%7D%7B2%5Cpi%20%2A0.012%2A%200.000884%5E%7B2%7D%20%7D)
B = 7.24 * 10⁻⁶T
B = 7.24 μT