1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PtichkaEL [24]
3 years ago
15

Consider steady one-dimensional heat transfer through a plane wall exposed to convection from both sides to environments at know

n temperatures T[infinity]1 and T[infinity]2 with known heat transfer coefficients h1 and h2. Once the rate of heat transfer has been evaluated, explain how you would determine the temperature of each surface.

Engineering
1 answer:
Leona [35]3 years ago
4 0

Answer:

Now find the temperature of each surface, we have that the the temperature on the left side of the wall is T∞₁ - Q/h₁A and  the temperature on the right side of the wall is T∞₂ + Q/h₂A.

Note: kindly find an attached diagram to the complete question given below.

Sources: The diagram/image was researched and taken from Slader website.

Explanation:

Solution

Let us consider the rate of heat transfer through the plane wall which can be obtained from the relations given below:

Q = T∞₁ -T₁/1/h₁A = T₁ -T₂/L/kA =T₂ -T∞₂/1/h₂A

= T∞₁  - T∞₂/1/h₁A + L/kA + 1/h₂A

Here

The convective heat transfer coefficient on the left side of the wall is h₁, while the convective heat transfer coefficient on the right side of the wall is h₂. the thickness of the wall is L, the thermal conductivity of the wall material is k, and the heat transfer area on one side of the wall is A. Q is refereed to as  heat transfer.

Thus

Let us consider the convection heat transfer on the left side of the wall which is given below:

Q = T∞₁ -T₁/1/h₁A

T₁ = T∞₁ - Q/h₁A

Therefore the temperature on the left side of the wall is T∞₁ - Q/h₁A

Now

Let us consider the convection heat transfer  on the left side of the wall which is given below:

Q= T₂ -T∞₂/1/h₂A

T₂ = T∞₂ + Q/h₂A

Therefore the temperature on the right side of the wall is T∞₂ + Q/h₂A

You might be interested in
Air is compressed adiabatically from p1 1 bar, T1 300 K to p2 15 bar, v2 0.1227 m3 /kg. The air is then cooled at constant volum
sashaice [31]

Answer:

Work done for the adiabatic process = -247873.6 J/kg = - 247.9 KJ/kg

Heat transfer for the constant volume process = - 244.91 KJ/kg

Explanation:

For the first State,

P₁ = 1 bar = 10⁵ Pa

T₁ = 300 K

V₁ = ?

Second state

P₂ = 15 bar = 15 × 10⁵ Pa

T₂ = ?

V₂ = 0.1227 m³/kg

Third state

P₃ = ?

T₃ = 300 K

V₃ = ?

We require the workdone for step 1-2 (which is adiabatic)

And heat transferred for steps 2-3 (which is isochoric/constant volume)

Work done for an adiabatic process is given by

W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)

where γ = ratio of specific heats = 1.4 for air since air is mostly diatomic

K = PVʸ

Using state 2 to calculate for k

K = P₂V₂ʸ = (15 × 10⁵)(0.1227)¹•⁴ = 79519.5

We also need V₁

For an adiabatic process

P₁V₁ʸ = P₂V₂ʸ = K

P₁V₁ʸ = K

(10⁵) (V₁¹•⁴) = 79519.5

V₁ = 0.849 m³/kg

W = K(V₂¹⁻ʸ - V₁¹⁻ʸ)/(1 - γ)

W = 79519.5 [(0.1227)⁻⁰•⁴ - (0.849)⁻⁰•⁴]/(1 - 1.4)

W = (79519.5 × 1.247)/(-0.4) = - 247873.6 J/kg = - 247.9 KJ/kg

To calculate the heat transferred for the constant volume process

Heat transferred = Cᵥ (ΔT)

where Cᵥ = specific heat capacity at constant volume for air = 0.718 KJ/kgK

ΔT = T₃ - T₂

We need to calculate for T₂

Assuming air is an ideal gas,

PV = mRT

T = PV/mR

At state 2,

V/m = 0.1227 m³/kg

P₂ = 15 bar = 15 × 10⁵ Pa

R = gas constant for air = 287.1 J/kgK

T₂ = 15 × 10⁵ × 0.1227/287.1 = 641.1 K

Q = 0.718 (300 - 641.1) = - 244.91 KJ/kg

7 0
3 years ago
I WILL GIVE BRAINLIEST IF ANSWER FAST What is the measurement of this dial caliper?
Galina-37 [17]
The answer is B. 4.045 inches
6 0
4 years ago
Read 2 more answers
When servicing an air bag system, Technician A probes the electrical connectors on the air bag module with a test light; Technic
Fantom [35]
Technician A Is correct
7 0
3 years ago
A steam power plant operating on a simple ideal Rankine cycle maintains the boiler at 6000 kPa, the turbine inlet at 600 °C, and
ohaa [14]

Answer:

ηa=0.349

ηb=0.345

Explanation:

The enthalpy and entropy at state 3 are determined from the given pressure and temperature with data from table:

h_{3}=3658.8kJ/kg\\ s_{3}=7.1693kJ/kg

The quality at state 4 is determined from the condition  s_{4} =s_{3} and the entropies of the components at the condenser pressure taken from table:

 q_{4} =\frac{s_{4}-s_{liq50}  }{s_{evap,50} } \\=\frac{7.1693-1.0912}{6.5019}=0.935

The enthalpy at state 4 then is:  

h_{4} =h_{liq50} +q_{4} h_{evap,50}\\ (340.54+0.935*2304.7)kJ/kg\\=2495.43kJ/kg\\

Part A

In the case when the water is in a saturated liquid state at the entrance of the pump the enthalpy and specific volume are determined from A-5 for the given pressure:  

h_{1}=340.54kJ/kg\\ \alpha _{1}=0.00103m^3/kg

The enthalpy at state 2 is determined from an energy balance on the pump:

h_{2} =h_{1} +\alpha _{1}( P_{2}-P_{1}  )

    =346.67 kJ/kg

The thermal efficiency is then determined from the heat input and output in the cycle:  

=1-\frac{q_{out} }{q_{in} } \\=1-\frac{h_{4} -h_{1} }{h_{3} -h_{2}} \\=0.349

Part B  

In the case when the water is at a lower temperature than the saturation temperature at the condenser pressure we look into table and see the water is in a compressed liquid state. Then we take the enthalpy and specific volume for that temperature with data from  and the saturated liquid values:  

h_{1}=293.7kJ/kg\\ \alpha _{1}=0.001023m^3/kg

The enthalpy at state 2 is then determined from an energy balance on the pump:  

h_{2} =h_{1} +\alpha _{1}( P_{2}-P_{1}  )

    =299.79 kJ/kg  

The thermal efficiency in this case then is:  

=1-\frac{q_{out} }{q_{in} } \\=1-\frac{h_{4} -h_{1} }{h_{3} -h_{2}} \\=0.345

8 0
3 years ago
The rotor is driven at ????m = 120π rad/sec. If the stator winding carries a current of 5 A (rms) at 60 Hz, determine the instan
Levart [38]

Answer:

(a) Frequency induced voltage of motor is 120 Hz

(b) The speed at which the machine will produce an average torque is 240π rad/s. Maximum Torque is 1.0 Nm

Explanation:

8 0
3 years ago
Other questions:
  • Which of the following does NOT describe product design.
    11·1 answer
  • What is a jack plane used for​
    11·1 answer
  • In plane stress, a prismatic bar of constant cross-section has an infinite length. a) True b) False
    14·1 answer
  • A vehicle has a crimped fuel return line. What effect will this have on 5-Gas analyzer gas readings?
    5·2 answers
  • Let m be an integer in the set {0,1,2,3,4,5,6,7,8, 9}, and consider the following problem: determine m by asking 3-way questions
    12·1 answer
  • Using the AASHTO procedure, determine the thickness required for a base and a surface layer over existing subgrade. The structur
    12·1 answer
  • What types of degradations that can take place in polymers and ceramics?
    11·1 answer
  • Determine the maximum weight of the flowerpot that can besupported without exceeding a cable tension of 50 lb in eithercable AB
    15·1 answer
  • Technician A says that a lack of lubrication on the back of the disc brake pads can cause brake noise. Technician B says that pa
    8·1 answer
  • Digital logic design
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!