Number of coulombs of positive charge in 250cm^3 water is 1.3×10^7 C
The volume of 250 cm^3 corresponds to a mass of 250 g since the density of water is 1.0 g/cm^3
This mass corresponds to 250/18 = 14 moles since the molar mass of water is 18. There are ten proton (each with charge q = +e) in each molecule of
So,
Q = 14NA q =14(6.02×10^23)(10)(1.60×10^−19C) = 1.3×10^7 C.
Mass is the quantity of matter in a physical body. It is also a measure of the body's inertia, the resistance to acceleration when a net force is applied. An object's mass also determines the strength of its gravitational attraction to other bodies.
Learn more about mass here:
brainly.com/question/17067547
#SPJ4
<span>only D-glucose is found in disaccharides and polysaccharides.</span>
It is fact that
6.023
×
10
23
formula units of barium nitrate have a mass of
16.6*10^23
⋅
g
. This is what we specify when we say molar mass. And thus the mass of
5.30
×
10
22
formula units of barium nitrate is the quotient multiplied by the molar mass:
5.30
×
10
22
6.023
×
10
23
m
o
l
×
16.6*10^23
⋅
g
⋅
m
o
l
−
1
Answer:
Rate constant = 0.0237 M-1 s-1, Order = Second order
Explanation:
In this problem, it can be observed that as the concentration decreases, the half life increases. This means the concentration of the reactant is inversely proportional to the half life.
The order of reaction that exhibit this relationship is the second order of reaction.
In the second order of reaction, the relationship between rate constant and half life is given as;
t1/2 = 1 / k[A]o
Where;
k = rate constant
[A]o = Initial concentration
k = 1 / t1/2 [A]
Uisng the following values;
k = ?
t1/2 = 113
[A]o = 0.372M
k = 1 / (113)(0.372)
k = 1 / 42.036 = 0.0237 M-1 s-1