Answer:
Newton's first law states that, if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
Newton's second law states that the acceleration of an object is directly related to the net force and inversely related to its mass. Acceleration of an object depends on two things, force and mass.
Newton's third law states that if an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A. This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.
Explanation:
Answer:
There are six main components, or parts, of weather. They are <u>temperature, atmospheric pressure, wind, humidity, precipitation, and cloudiness</u>. Together, these components describe the weather at any given time. These changing components, along with the knowledge of atmospheric processes, help meteorologists—scientists who study weather—forecast what the weather will be in the near future.
Answer:
exerts force
Explanation:
The accumulation of excess electric charge on an object is called static electricity. ... An electric field surrounds every electric charge and exerts the force that causes other electric charges to attract or repel. Electric fields are represented by arrows showing the electric field would make a positive charge move.
Answer:
The rate of change of distance between the two ships is 18.63 km/h
Explanation:
Given;
distance between the two ships, d = 140 km
speed of ship A = 30 km/h
speed of ship B = 25 km/h
between noon (12 pm) to 4 pm = 4 hours
The displacement of ship A at 4pm = 140 km - (30 km/h x 4h) =
140 km - 120 km = 20 km
(the subtraction is because A is moving away from the initial position and the distance between the two ships is decreasing)
The displacement of ship B at 4pm = 25 km/h x 4h = 100 km
Using Pythagoras theorem, the resultant displacement of the two ships at 4pm is calculated as;
r² = a² + b²
r² = 20² + 100²
r = √10,400
r = 101.98 km
The rate of change of this distance is calculated as;
r² = a² + b²
r = 101.98 km, a = 20 km, b = 100 km
Answer:
Explanation:
Analogy:
Who does more work:
Work done is defined as the product of force and distance. Work is done when force moves a body in a particular direction.
In this case, work done is the same thing as the potential energy of the weight.
Work done = potential energy = m x g x h
Mass of weight = 100kg for both Mike and Brian
g is the acceleration due to gravity
h is the height
Since they lifted the weight through the same height;
Work done by Mike = 100gh
Work done by Brian = 100gh
Both Mike and Brian does equal work
Who generates more power:
Power is the rate at which work is done;
Power =
Power generated by Mike = = 50gh
Power generated by Brian = = 33.33gh
We can see that Mike generated more power