Answer : The concentration after 17.0 minutes will be, 
Explanation :
The expression for first order reaction is:
![[C_t]=[C_o]e^{-kt}](https://tex.z-dn.net/?f=%5BC_t%5D%3D%5BC_o%5De%5E%7B-kt%7D)
where,
= concentration at time 't' (final) = ?
= concentration at time '0' (initial) = 0.100 M
k = rate constant = 
t = time = 17.0 min = 1020 s (1 min = 60 s)
Now put all the given values in the above expression, we get:
![[C_t]=(0.100)\times e^{-(5.40\times 10^{-3})\times (1020)}](https://tex.z-dn.net/?f=%5BC_t%5D%3D%280.100%29%5Ctimes%20e%5E%7B-%285.40%5Ctimes%2010%5E%7B-3%7D%29%5Ctimes%20%281020%29%7D)
![[C_t]=4.05\times 10^{-4}M](https://tex.z-dn.net/?f=%5BC_t%5D%3D4.05%5Ctimes%2010%5E%7B-4%7DM)
Thus, the concentration after 17.0 minutes will be, 
The answer is 4.
Gases have low densities, because of the increased space between hight-energy particles.
The compound that would have the highest osmotic pressure when dissolved in water is
.
So, option D is correct one.
The dissociation of one molecule of
gives the maximum number of ions when dissolved in water ( 4 ions ) . Osmotic pressure is a colligative property and depends upon number of solute particles present in the solution . The solution having maximum number of solute particles will have maximum number of the osmotic pressure .
All other given molecules gives less number of number of ions when dissolved in water as compare to of
.
To learn more about osmotic pressure
brainly.com/question/10046758
#SPJ4
Answer:
1.81 x 10²⁴ atoms
Explanation:
To find the number of atoms in the given number of moles, we need to understand that every substance contains the Avogadro's number of particles.
More appropriately, a mole of any substance will contain the Avogadro's number of particles which is 6.02 x 10²³ atoms
So;
If 1 mole of a substance = 6.02 x 10²³ atoms;
3 mole of MgCl₂ will contain 3 x 6.02 x 10²³ = 1.81 x 10²⁴ atoms
Answer:
0.9975 cup
Step-by-step explanation:
"Unrefined dark crystalline sugar" is what non-chemists call "brown sugar."
200.0 g brown sugar = 1 cup
199.5 g brown sugar = 199.5× 1/200
.0
199.5 g brown sugar = 0.9975 cup
A standard measuring cup is not capable of this precision and, furthermore, the mass of brown sugar you can get into a cup depends on how tightly you pack it.
Your Mole Day cake will be fine if you use 1 cup of brown sugar as usual.