d. 49.0 m/s
<em><u>this</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>your</u></em><em><u> </u></em><em><u>answer</u></em><em><u>. </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>OK</u></em><em><u>. </u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>please</u></em><em><u> </u></em><em><u>mark</u></em><em><u> </u></em><em><u>me</u></em><em><u> </u></em><em><u>as</u></em><em><u> </u></em><em><u>brainliest</u></em><em><u>. </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
<em><u>follow</u></em><em><u> </u></em><em><u>me</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>my</u></em><em><u> </u></em><em><u>friend</u></em><em><u>. </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Answer:
The boats are 934.65 feet apart
Explanation:
Given:
The angles of depression to the two boats are 42 degrees and 29 degrees
Height of the observation deck i = 1,353 feet
To Find:
How far apart are the boats (y )= ?
Solution:
<em><u>Step 1 : Finding the value of x(Refer the figure attached)</u></em>
We can use the tangent ratio to find the x value


x = 590.47 feet
<em><u>Step 2 : Finding the value of z (Refer the figure attached)</u></em>


z = 1525.12 feet
<em><u>Step 3 : Finding the value of y (Refer the figure attached</u></em>)
y = z -x
y = 1525.12 - 590.47
y = 934.65 feet
Thus the two boats are 934.65 feet apart
Here's link
to the answer:
bit.
ly/3gVQKw3
Answer:
159.38 Watts
Explanation:
Initially;
- Mass on the spring is 8.5 kg
- Therefore, compression force is 85 N
- Compression distance is 15 cm or 0.15 m
But;
F = kx
where F is the force of compression, k is the spring constant and x is the compression distance.
Thus;
k = F/x
= 85 N ÷0.15
= 566.67 N/m
We are required to determine the power needed to stretch the same spring for 1.5 m in 4 secs.
Power = Work done ÷ time
Work done is given by 0.5kx²
Therefore;
Power = 0.5kx²÷ t
= (0.5×566.67 N/m × 1.5² ) ÷ 4 seconds
= 159.38 Watts
Thus, the power needed is 159.38 watts