Answer:
As much I know the gravity on moon is 1.62m/s२.
Answer:
One would need to know how far apart the towns are:
T = SA / 40 time it takes for first cyclist to travel S1
T = SB / 60 time it takes for cyclist B to travel distance S2
SA + SB = S the distance between the towns
SB = 60 / 40 SA = 1.5 SA
SA + 1.5 SA = S
S = 2.5 SA where cyclist travels distance SA
The time will depend on the separation of the towns.
Answer:
2.41 L
Explanation:
We can solve the problem by using the ideal gas equation, which can be rewritten as:

where we have:
(initial pressure is stp pressure)
is the initial volume
is the initial temperature (stp temperature)
is the final pressure
is the final volume
is the final temperature
By substituting the numbers inside the formula and solving for V2, we find the final volume:

which corresponds to 2.41 L.
The more energy orbits the radiation jumps the more energy it has. So if the frequency stays the same each time then the wavelength will get longer if there is more energy.
In this case the situation in which the radiation jumps the most energy orbits is when: the electron jumps from the fourth orbit to the first orbit. This will emit the longest wavelength