1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir1956 [14]
3 years ago
6

How could the location of tests affect the performance of a catapult ?

Engineering
2 answers:
Svetach [21]3 years ago
6 0

The location of tests affect the performance of a catapult depending on the length of the arm.

<u>Explanation:</u>

A ball from a catapult, will travel a longer distance by increasing the length of the arm. Using the catapult, if the arm is extended to different lengths the wooden ball how far it is thrown can be observed.

This shows that extending the arm length does increase the distance thrown. To shoot a far distance (example for sideways) you need to the pebble sideways and up. By doing this, it can travel a longer distance

Luba_88 [7]3 years ago
3 0

Answer:

It could affect how far the projectile travels

Explanation:

Facing Uphill: Moves less far

Downhill: Moves further

You might be interested in
Please help me with this. Plzzz.
Drupady [299]

Answer:

450,000m = 450km = 4.5E5

32,600,000W = 32.6MW = 3.26E7

59,700,000,000cal = 59.7Gcal = 5.97E10

0.000000083s = 83ns = 8.3E-8

35,000Ω = 35kΩ = 3.5E4

Explanation:

Giga   = 1,000,000,000

Mega = 1,000,000

kilo     = 1,000

unit    = 1

deci   = .1

centi  = .01

milli    = .001

micro = .000001

nano = .0000000001

pico  = .000000000001

You should be able to look at these and convert between them in seconds if you want to pursue anything in engineering.

7 0
3 years ago
(35-39) A student travels on a school bus in the middle of winter from home to school. The school bus temperature is 68.0° F. Th
arlik [135]

Answer:

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

Explanation:

From Heat Transfer we determine that heat transfer rate due to electromagnetic radiation (\dot Q), measured in BTU per hour, is represented by this formula:

\dot Q = \epsilon\cdot A\cdot \sigma \cdot (T_{s}^{4}-T_{b}^{4}) (1)

Where:

\epsilon - Emissivity, dimensionless.

A - Surface area of the student, measured in square feet.

\sigma - Stefan-Boltzmann constant, measured in BTU per hour-square feet-quartic Rankine.

T_{s} - Temperature of the student, measured in Rankine.

T_{b} - Temperature of the bus, measured in Rankine.

If we know that \epsilon = 0.90, A = 16.188\,ft^{2}, \sigma = 1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}}, T_{s} = 554.07\,R and T_{b} = 527.67\,R, then the heat transfer rate due to electromagnetic radiation is:

\dot Q = (0.90)\cdot (16.188\,ft^{2})\cdot \left(1.714\times 10^{-9}\,\frac{BTU}{h\cdot ft^{2}\cdot R^{4}} \right)\cdot [(554.07\,R)^{4}-(527.67\,R)^{4}]

\dot Q = 417.492\,\frac{BTU}{h}

Under the consideration of steady heat transfer we find that the net energy transfer from the student's body during the 20 min-ride to school is:

Q = \dot Q \cdot \Delta t (2)

Where \Delta t is the heat transfer time, measured in hours.

If we know that \dot Q = 417.492\,\frac{BTU}{h} and \Delta t = \frac{1}{3}\,h, then the net energy transfer is:

Q = \left(417.492\,\frac{BTU}{h} \right)\cdot \left(\frac{1}{3}\,h \right)

Q = 139.164\,BTU

The net energy transfer from the student's body during the 20-min ride to school is 139.164 BTU.

7 0
2 years ago
A train consists of a 50 Mg engine and three cars, each having a mass of 30 Mg . If it takes 75 s for the train to increase its
ohaa [14]

Answer:

T = 15 kN

F = 23.33 kN

Explanation:

Given the data in the question,

We apply the impulse momentum principle on the total system,

mv₁ + ∑\int\limits^{t2}_{t1} {Fx} \, dt = mv₂

we substitute

[50 + 3(30)]×10³ × 0 + FΔt = [50 + 3(30)]×10³ ×  ( 45 × 1000 / 3600 )  

F( 75 - 0 ) =  1.75 × 10⁶

The resultant frictional tractive force F is will then be;

F =  1.75 × 10⁶ / 75

F = 23333.33 N

F = 23.33 kN

Applying the impulse momentum principle on the three cars;

mv₁ + ∑\int\limits^{t2}_{t1} {Fx} \, dt = mv₂

[3(30)]×10³ × 0 + FΔt = [3(30)]×10³ ×  ( 45 × 1000 / 3600 )  

F(75-0) = 1.125 × 10⁶

The force T developed is then;

T =  1.125 × 10⁶ / 75

T = 15000 N

T = 15 kN

7 0
3 years ago
A well insulated rigid tank contains 4 kg of argon gas at 450 kPa and 30 C. A valve is opened, allowing the argon to escape unti
natima [27]

Answer:

Final mass of Argon=  2.46 kg

Explanation:

Initial mass of Argon gas ( M1 ) = 4 kg

P1 = 450 kPa

T1 = 30°C = 303 K

P2 = 200 kPa

k ( specific heat ratio of Argon ) = 1.667

assuming a reversible adiabatic process

<u>Calculate the value of the M2 </u>

Applying ideal gas equation ( PV = mRT )

P₁V / P₂V = m₁ RT₁ / m₂ RT₂

hence : m2 = P₂T₁ / P₁T₂ * m₁

                   = (200 * 303 ) / (450 * 219 ) * 4

                   = 2.46 kg

<em>Note: Calculation for T2 is attached below</em>

5 0
2 years ago
The purpose of pasteurizing milk is to
katen-ka-za [31]

Answer:

i think it c

Explanation:

6 0
3 years ago
Read 2 more answers
Other questions:
  • List the thermal conductivities of five
    15·1 answer
  • A 400-m^3 storage tank is being constructed to hold LNG, liquefied natural gas, which may be assumed to be essentially pure meth
    8·1 answer
  • A closed system contains propane at 35°c. It produces 35 kW of work while absorbing 35 kW of heat. What is process? the temperat
    7·1 answer
  • Question 11 (1 point)
    12·1 answer
  • An intranet is a restricted network that relies on Internet technologies to provide an Internet-like environment within the comp
    11·1 answer
  • The chart shows the bids provided by four engineers to test a prototype.
    6·1 answer
  • In a wire, when elongation is 4 cm energy stored is E. if it is stretched by 4 cm, then what amount of elastic potential energy
    15·2 answers
  • Technician A states that air tools generally produce more noise than electric tools, so wear ear protection when using air tools
    8·1 answer
  • Which fields of engineering use fluid power? Explain how these fields make use of fluid power systems: water supply, agricultura
    10·1 answer
  • Technician A says that the definition of torque is how far the crankshaft twists in degrees.Technician B says that torque can re
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!