Answer:
the initial temperature of the iron sample is Ti = 90,36 °C
Explanation:
Assuming the calorimeter has no heat loss to the surroundings:
Q w + Q iron = 0
Also when the T stops changing means an equilibrium has been reached and therefore, in that moment, the temperature of the water is the same that the iron ( final temperature of water= final temperature of iron = T )
Assuming Q= m*c*( T- Tir)
mc*cc*(T-Tc)+mir*cir*(T - Tir) = 0
Tir = 20.3 °C + 300 g * 4.186 J/g°C * (20.3 C - 19 °C) / ( 51.9 g * 0.449 J/g°C )
Tir = 90.36 °C
Note :
- The specific heat capacity of water is assumed 1 cal/g°C = 4.186 J/g°C
- We assume no reaction between iron and water
Answer:
23892U=23490Th +42He
Explanation:
In alpha decay, the daughter nucleus is two units less than the parent in atomic number. The mass number also decreases by 4 units. The daughter is thus found two places before the parent in the periodic table.
For example, the atomic mass of an oxygen atom is 16.00 amu; that means the molar mass of an oxygen atom is 16.00 g/mol. Further, if you have 16.00 grams of oxygen atoms, you know from the definition of a mole that your sample contains 6.022 x 10^23 oxygen atoms.
Answer:
The answer is
<h2>59.6 g </h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
<h3>mass = Density × volume</h3>
From the question
Density of aluminum = 2.00 g/mL
volume = 29.8 mL
The mass is
mass = 2 × 29.8
We have the final answer as
<h3>59.6 g</h3>
Hope this helps you
Answer:
4.8 %
Explanation:
We are asked the concentration in % by mass, given the molarity of the solution and its density.
0.8 molar solution means that we have 0.80 moles of acetic acid in 1 liter of solution. If we convert the moles of acetic acid to grams, and the 1 liter solution to grams, since we are given the density of solution, we will have the values necessary to calculate the % by mass:
MW acetic acid = 60.0 g/mol
mass acetic acid (the solute) = 0.80 mol x 60 g / mol = 48.00 g
mass of solution = 1000 cm³ x 1.010 g/ cm³ (1l= 1000 cm³)
= 1010 g
% (by mass) = 48.00 g/ 1010 g x 100 = 4.8 %