Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:

where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:

where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:

- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:

- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

- Replacing by the givens in (5), we can solve for μsmín, as follows:

Answer:
Explanation:
Balance point will be achieved as soon as the weight of the baby elephant creates torque equal to torque created by weight of woman about the pivot. torque by weight of woman
weight x distance from pivot
= 500x 5
= 2500 Nm
torque by weight of baby woman , d be distance of baby elephant from pivot at the time of balance
= 2500x d
for equilibrium
2500 d = 2500
d = 1 m
So elephant will have to walk up to 1 m close to pivot or middle point.
Answer:
C. Plant A orbits its star faster than Plant B
Explanation:
Did it on study island
Answer:
a) 1.20227 seconds
b) 0.98674 m
c) 7.3942875 m/s
Explanation:
t = Time taken
u = Initial velocity = 4.4 m/s
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.81 m/s²


b) Her highest height above the board is 0.98674 m
Total height she would fall is 0.98674+1.8 = 2.78674 m

a) Her feet are in the air for 0.75375+0.44852 = 1.20227 seconds

c) Her velocity when her feet hit the water is 7.3942875 m/s
Answer:
The Flemings left hand rule is used to find the magnitude of a magnetic force
Explanation:
Fleming's left hand rule states that if the first three fingers are held mutually at right angles to one another, then the fore finger points into the direction of magnetic field the middle finger in the direction of current while the thumb points in the direction of force.
Mathematically
Magnetic Force F= BILsinθ
Where
B= magnetic field density Tesla
I= current
L= length of conductor
θ= angle of conductor with field