Figure A shows cross section of a land form or rock. In Figure B, compression stress is applied on it. When compression stresses are applied on a rock, it squeezes the rock cause fold or fracture. The fault formed by compression stress is called thrust fault. If the compression stresses/ force continue to act on a rock it will converge and form thrust fault. In Figure C, tension stresses is applied on the rock. When a tension stress applied on a rock it deforms/ lengthen. There are three type of deformations occur due to tension stresses. One is elastic deformation, in which, rock retains it original shape when force/stresses are removed. Second is plastic deformation, in which rock lengthen and change occur permanently. Third type of deformation is result into fracture or breaking of rock. In Figure C, shear stresses are applied on rock. Shear stresses are applied with equal magnitude but in opposite direction. It cause breaking of rock.
Answer:

Explanation:
From the question we are told that:
Frictional force 
Coefficient of kinetic friction 
Generally the equation for Normal for is mathematically given by

Therefore


<span> The masses have no inertia about their own CM, and "the object" is the two masses. </span>
<span>1. Icm (at point A) = 2mr^2
hope this helps</span>
Answer:
7.72 Liters
Explanation:
normal body temperature = T_body =37° C
temperature of ice water = T_ice =0°c
specfic heat of water = c_{water} =4186J/kg.°C
if the person drink 1 liter of cold water mass of water is = m = 1.0kg
heat lost by body is Qwater =mc_{water} ΔT
= mc{water} ( T_ice - T_body)
= 1.0×4186× (0 -37)
= -154.882 ×10^3 J
here negative sign indicates the energy lost by body in metabolic process energy expended due to brisk - hour long walk is Q_{walk} = 286 kilocalories
= 286×4186J
so number of liters of ice water have to drink is
n×Q_{water} =Q_{walk} n= Q_{walk}/ Q_{water}
= 286×4186J/154.882×10^3 J
= 7.72 Liters