Unit is m^3 or metres cubed. You need to multiply the three dimensions of the block to get the volume.
A ruler can be used to measure the edges.
The distance traveled by the particle at the given time interval is 0.28 m.
<h3>
Position of the particle at time, t = 0</h3>
The position of the particle at the given time is calculated as follows;
x = 2 sin2(t)
y = 2 cos2(t)
x(0) = 2 sin2(0) = 0
y(0) = 2 cos2(0) = 2(1) = 2
<h3>
Position of the particle at time, t = 4</h3>
x = 2 sin2(t)
y = 2 cos2(t)
x(4) = 2 sin2(4) = 0.28
y(4) = 2 cos2(4) = 2(1) = 1.98
<h3>Distance traveled by the particle at the given time interval</h3>
d = √[(x₄ - x₀)² + (y₄ - y₀)²]
d = √[(0.28 - 0)² + (1.98 - 2)²]
d = 0.28 m
Thus, the distance traveled by the particle at the given time interval is 0.28 m.
Learn more about distance here: brainly.com/question/23848540
#SPJ1
<span>The number in front is the number of molecules (or atoms) taking part in the (balanced) chemical reaction equation.</span>
bonsoir, je peux vous aider avec les maths laissez-moi comprendre merci
Answer:
1.52m/s
Explanation:
Using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
m1 and m2 are the masses
u1 and u2 are the initial velocities
v is the final velocity
Substitute the given values into the formula
0.013(270)+2(130) = (270+130)v
3.51+260 = 400v
263.51 = 400v
v = 400/263.51
v = 1.52m/s
Hence the velocity after the bullet emerges is 1.52m/s