Answer:
ice forming and then melting back into water
In order to find the efficiency first we will find the Change in Potential energy of the small stone that robot picked up
First we will find the mass of the stone
As it is given that stone is spherical in shape so first we will find its volume



Now it is given that it's specific gravity is 10.8
So density of rock is

mass of the stone will be



now change in potential energy is given as

here
g = gravity on planet = 0.278 m/s^2
H = height lifted upwards = 15 cm


Now energy supplied by internal circuit of robot is given by

V = voltage supplied = 10 V
i = current = 1.83 mA
t = time = 12 s


Now efficiency is defined as the ratio of output work with given amount of energy used


so efficiency will be 23 %
Saying english so we can help u
B because the the organism is changing into another chemical form
Explanation:
Below is an attachment containing the solution.