Kinetic energy = 1/2 × m × v^2
16 = 1/2 × m × 2^2
16 = 1/2 × m × 4
16 = 2 × m
16/2 = m
8 = m
so the mass is 8 kg
The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert<span> small force on the wall The </span>pressure exerted<span> by the </span>gas<span> is due to the sum of all these collision forces.The more particles that hit the walls, the higher the </span>pressure<span>.</span>
Kepler derived his three laws of planetary motion entirely from
observations of the planets and their motions in the sky.
Newton published his law of universal gravitation almost a hundred
years later. Using some calculus and some analytic geometry, which
any serious sophomore in an engineering college should be able to do,
it can be shown that IF Newton's law of gravitation is correct, then it MUST
lead to Kepler's laws. Gravity, as Newton described it, must make the planets
in their orbits behave exactly as they do.
This demonstration is a tremendous boost for the work of both Kepler
and Newton.
At point x = 0, the particle accelerates. Since there will be change of velocity at that point. The the force of the particle will change from negative sign to positive sign according to the given figure, we can therefore conclude that the particle will have a turning point at point x = 0.
Given that a 2.0 kg particle moving along the z-axis experiences the force shown in a given figure.
Force is the product of mass and acceleration. While acceleration is the rate of change of velocity. Both the force and acceleration are vector quantities. They have both magnitude and direction.
If the particle's velocity is 3.0 m/s at x = 0 m, that mean that the particle experience change of velocity at point x = 0. Since the the force of the particle will change from negative sign to positive sign according to the given figure, we can therefore conclude that the particle will have a turning point at point x = 0.
Learn more here: brainly.com/question/20366032
Yes that's correct. Also zeros in between non-zero numbers are significant figures