The strong nuclear force holds the nucleus of an atom together.
Somehow, it overcomes the electrical force of repulsion between protons in the nucleus, which all have the same charge but still stay close together somehow. (b)
Answer:
7.22 × 10²⁹ kg
Explanation:
For the material to be in place, the gravitational force on the material must equal the centripetal force on the material.
So, F = gravitational force = GMm/R² where M = mass of neutron star, m = mass of object and R = radius of neutron star = 17 km
The centripetal force F' = mRω² where R = radius of neutron star and ω = angular speed of neutron star
So, since F = F'
GMm/R² = mRω²
GM = R³ω²
M = R³ω²/G
Since ω = 500 rev/s = 500 × 2π rad/s = 1000π rad/s = 3141.6 rad/s = 3.142 × 10³ rad/s and r = 17 km = 17 × 10³ m and G = universal gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg²
Substituting the values of the variables into M, we have
M = R³ω²/G
M = (17 × 10³ m)³(3.142 × 10³ rad/s)²/6.67 × 10⁻¹¹ Nm²/kg²
M = 4913 × 10⁹ m³ × 9.872 × 10⁶ rad²/s²/6.67 × 10⁻¹¹ Nm²/kg²
M = 48,501.942 × 10¹⁵ m³rad²/s² ÷ 6.67 × 10⁻¹¹ Nm²/kg²
M = 7217.66 × 10²⁶ kg
M = 7.21766 × 10²⁹ kg
M ≅ 7.22 × 10²⁹ kg
Answer:
a) Em₀ = 42.96 104 J
, b)
= -2.49 105 J
, c) vf = 3.75 m / s
Explanation:
The mechanical energy of a body is the sum of its kinetic energy plus the potential energies it has
Em = K + U
a) Let's look for the initial mechanical energy
Em₀ = K + U
Em₀ = ½ m v2 + mg and
Em₀ = ½ 50.0 (1.20 102) 2 + 50 9.8 142
Em₀ = 36 104 + 6.96 104
Em₀ = 42.96 104 J
b) The work of the friction force is equal to the change in the mechanical energy of the body
= Em₂ -Em₀
Em₂ = K + U
Em₂ = ½ m v₂² + m g y₂
Em₂ = ½ 50 85 2 + 50 9.8 427
Em₂ = 180.625 + 2.09 105
Em₂ = 1,806 105 J
= Em₂ -Em₀
= 1,806 105 - 4,296 105
= -2.49 105 J
The negative sign indicates that the work that force and displacement have opposite directions
c) In this case the work of the friction going up is already calculated in part b and the work of the friction going down would be 1.5 that job
We have that the work of friction is equal to the change of mechanical energy
= ΔEm
= Emf - Emo
-1.5 2.49 10⁵ = ½ m vf² - 42.96 10⁴
½ m vf² = -1.5 2.49 10⁵ + 4.296 10⁵
½ 50.0 vf² = 0.561
vf = √ 0.561 25
vf = 3.75 m / s
Answer:
B. Longer than t s,
Explanation:
Gravitational accln on earth is 9.8 m/s^2,
and one you provided as on moon is 1.6 m/s^2
that mean on moon gr. accl. is lesser!
now the time taken on earth will be lesser cuz from the same height if you drop the object from rest!
since accln on earth is higher,the object will attain higher velocity as compare to that of on moon!
✌️:)
I think is altitude because tbh it don’t even mean nothing