Answer:
The magnetic field will be
, '2d' being the distance the wires.
Explanation:
From Biot-Savart's law, the magnetic field (
) at a distance '
' due to a current carrying conductor carrying current '
' is given by

where '
' is an elemental length along the direction of the current flow through the conductor.
Using this law, the magnetic field due to straight current carrying conductor having current '
', at a distance '
' is given by

According to the figure if '
' be the current carried by the top wire, '
' be the current carried by the bottom wire and '
' be the distance between them, then the direction of the magnetic field at 'P', which is midway between them, will be perpendicular towards the plane of the screen, shown by the
symbol and that due to the bottom wire at 'P' will be perpendicular away from the plane of the screen, shown by
symbol.
Given
and 
Therefore, the magnetic field (
) at 'P' due to the top wire

and the magnetic field (
) at 'P' due to the bottom wire

Therefore taking the value of
the net magnetic field (
) at the midway between the wires will be

Math is the process of using the given information, along with
all the general stuff that you know, to find the missing information.
With no given information, we have no way to even guess at
an answer.
Answer:
False
Explanation:
Balanced forces result in a net force of 0N. This means no direction or acceleration change will be applied to the object. A torque may be applied, but with no other external forces, the object will not move.
Answer:
Concave lenses are used in eyeglasses that correct myopia or nearsightedness.