Answer : Magnitude
Explanation :
In a value, the magnitude is represented by its units. It can be adopted by convention or by law.
Magnitude of any unit is used to measure the same kind of quantity.
For example: The unit of length which is a physical quantity is meter (m).
So, magnitude is correct answer.
Answer: the two states that are fluid are;-
<u>#{1} liquid</u>
<u>#{2} gas </u>
Explanation:
as we know that there are mainly three states of substance
but among them only two of them can fluid and takes the shape of the container that are liquid and gas
Answer:
(A) 0.63 J
(B) 0.15 m
Explanation:
length (L) = 0.75 m
mass (m) =0.42 kg
angular speed (ω) = 4 rad/s
To solve the questions (a) and (b) we first need to calculate the rotational inertia of the rod (I)
I = Ic + m
Ic is the rotational inertia of the rod about an axis passing trough its centre of mass and parallel to the rotational axis
h is the horizontal distance between the center of mass and the rotational axis of the rod
I =
)^{2}[/tex]
I =
)^{2}[/tex])
I = 0.07875 kg.m^{2}
(A) rods kinetic energy = 0.5I
= 0.5 x 0.07875 x
= 0.63 J 0.15 m
(B) from the conservation of energy
initial kinetic energy + initial potential energy = final kinetic energy + final potential energy
Ki + Ui = Kf + Uf
at the maximum height velocity = 0 therefore final kinetic energy = 0
Ki + Ui = Uf
Ki = Uf - Ui
Ki = mg(H-h)
where (H-h) = rise in the center of mass
0.63 = 0.42 x 9.8 x (H-h)
(H-h) = 0.15 m
Answer:
The inertial force of the body
Explanation:
Everybody that is moving in a curved path has an inertial force called centrifugal force.
The counterforce of the centrifugal force is called the centripetal force. It also acts on every rotating body.
This force is always directed towards the center of the origin of the curve.
The velocity of the object changes its direction and magnitude at any instant of time. But the speed and angular velocity of the object remains the same for uniform circular motion.
So, according to the Newtonian mechanics, it is the inertial force of the body responsible for the centripetal force.