The ball is travelling faster when the two objects hits the level ground below.
<h3>Time of motion of the objects</h3>
The time of motion of the objects depends on height and initial velocity of projection of the objects.
The stone has no initial vertical velocity while the ball has initial vertical velocity.
Thus, the ball is travelling faster when the two objects hits the level ground below.
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
<h3><u>Answer</u> :</h3>
Initial velocity = zero (i.e., free fall)
Final velocity = 30m/s
Acceleration due to gravity = 10m/s²
For a body falling freely under the action of gravity, g is taken positive
◈ <u>First equation of kinenatics</u> :
⇒ v = u + gt
⇒ 30 = 0 + 10t
⇒ t = 30/10
⇒ <u>t = 3s</u>
Hence, object will attain a speed of 30m/s after 3s.
The largest mass is 4.7 x 10³⁰ kg and the smallest mass is 5 x 10²⁹ kg.
The given parameters;
- <em>distance between the two black holes, r = 10 AU = 1.5 x 10¹² m</em>
- <em>gravitational force between the two black holes, F = 6.9 x 10²⁵ N.</em>
- <em>combined mass of the two black holes = 5.20 x 10³⁰ kg</em>
The product of the two masses is calculated from Newton's law of universal gravitational as follows;

The sum of the two masses is given as;
m₁ + m₂ = 5.2 x 10³⁰ kg
m₂ = 5.2 x 10³⁰ kg - m₁
The first mass is calculated as follows;
m₁(5.2 x 10³⁰ - m₁) = 2.328 x 10⁶⁰
5.2 x 10³⁰m₁ - m₁² = 2.328 x 10⁶⁰
m₁² - 5.2 x 10³⁰m₁ + 2.328 x 10⁶⁰ = 0
<em>solve the quadratic equation using formula method</em>;
a = 1, b =- 5.2 x 10³⁰, c = 2.328 x 10⁶⁰

The second mass is calculated as follows;
m₂ = 5.2 x 10³⁰ kg - m₁
m₂ = 5.2 x 10³⁰ kg - 4.7 x 10³⁰ kg
m₂ = 5 x 10²⁹ kg
or
m₂ = 5.2 x 10³⁰ kg - 4.9 x 10²⁹ kg
m₂ = 4.7 x 10³⁰ kg
Thus, the largest mass is 4.7 x 10³⁰ kg and the smallest mass is 5 x 10²⁹ kg.
Learn more here:brainly.com/question/9373839
Answer:
4.3 x 10^16 kg
Explanation:
M = rv^2/G =[90,000 x 5.66^2] / [6.67 x 10^-11]
M = 43,226,446,776,611,694 = 4.3 x 10^16 kg - Ida's mass.