Answer:
35.6 N
Explanation:
We can consider only the forces acting along the horizontal direction to solve the problem.
There are two forces acting along the horizontal direction:
- The horizontal component of the pushing force, which is given by

with 
- The frictional force, whose magnitude is

where
, m=8.2 kg and g=9.8 m/s^2.
The two forces have opposite directions (because the frictional force is always opposite to the motion), and their resultant must be zero, because the suitcase is moving with constant velocity (which means acceleration equals zero, so according to Newton's second law: F=ma, the net force is zero). So we can write:

Answer:
The speed is 24 
Explanation:
A wave is a disturbance that propagates through a certain medium or in a vacuum, with transport of energy but without transport of matter.
The wavelength is the minimum distance between two successive points of the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The speed of propagation is the speed with which the wave propagates in the middle, that is, the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate wavelength (λ) and frequency (f) inversely proportionally using the following equation:
v = f * λ.
In this case, λ= 8 meter and f= 3 Hz
Then:
v= 3 Hz* 8 meter
So:
v= 24 
<u><em>The speed is 24 </em></u>
<u><em></em></u>
Answer:
3.16 ×
W/
Explanation:
β(dB)=10 × 
=
W/
β=55 dB
Therefore plugging into the equation the values,
55=10
})[/tex]
5.5=
})[/tex]
= 
316227.76×
= I
I= 3.16 ×
W/
Answer:
2 kg
Explanation:
Acceleration = 5 m/s^2
Force = 10 N
Force = mass * acceleration
mass = force / acceleration
mass = 10 / 5
mass = 2 kg