1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexgriva [62]
3 years ago
12

Why is acceleration measured in meters / seconds squared? plz use your own words

Physics
2 answers:
Sati [7]3 years ago
8 0
Acceleration is velocity over time, and velocity is displacement over time. (This explains why time is squared.) As for the units, physicists (as well as pretty much any other kind of scientist) rely on SI units, which are the units generally accepted by scientists world-wide. Meters are the SI unit for length, and seconds are the SI unit for time.
oksano4ka [1.4K]3 years ago
6 0

This is because to find acceleration, you must divide velocity by time. Velocity is measured in meters / second, and time is measured in seconds. So, when meters / second is divided by seconds, the units become meters / second squared.



Hope this helps



Tobey

You might be interested in
The average period of pendulum clock is found to be 1.2s at sea level. The period of the same pendulum on a mountain top is foun
Kipish [7]

Answer:

g' = 10.12m/s^2

Explanation:

In order to calculate the acceleration due to gravity at the top of the mountain, you first calculate the length of the pendulum, by using the information about the period at the sea level.

You use the following formula:

T=2\pi \sqrt{\frac{l}{g}}         (1)

l: length of the pendulum = ?

g: acceleration due to gravity at sea level = 9.79m/s^2

T: period of the pendulum at sea level = 1.2s

You solve for l in the equation (1):

l=\frac{gT^2}{4\pi^2}\\\\l=\frac{(9.79m/s^2)(1.2s)^2}{4\pi^2}=0.35m

Next, you use the information about the length of the pendulum and the period at the top of the mountain, to calculate the acceleration due to gravity in such a place:

T'=2\pi \sqrt{\frac{l}{g'}}\\\\g'=\frac{4\pi^2l}{T'^2}

g': acceleration due to gravity at the top of the mountain

T': new period of the pendulum

g'=\frac{4\pi^2(0.35m)}{(1.18s)^2}=10.12\frac{m}{s^2}

The acceleration due to gravity at the top of the mountain is 10.12m/s^2

5 0
3 years ago
You are throwing a stone straight-up in the absence of air friction. The stone is caught at the same height from which it was th
balu736 [363]

Answer:

A. True

Explanation:

When a stone is thrown straight-up, it has an initial velocity which decreases gradually as the stone move to maximum height due to constant acceleration due to gravity acting downward on the stone, at the maximum height the final velocity of the stone is zero. As the stone descends the velocity starts to increase and becomes maximum  before it hits the ground.

Height of the motion is given by;

H = \frac{u^2}{2g}

g is acceleration due to gravity which is constant

H is height traveled

u is the speed of throw, which determines the value of height traveled.

Therefore, when the stone is caught at the same height from which it was thrown in the absence of air resistance, the speed of the stone when thrown will be equal to the speed when caught.

7 0
3 years ago
What can you infer about a wave with a short wavelength?
raketka [301]

Answer:

- It can be infer that it has a lower frequency.

<em>In the case of electromagnetic waves.</em>

- A short wavelength means a lower energy,

Explanation:

The wavelength is the distance between two consecutive crests or valleys while the frequency is the number of crests that pass for a specific point in an interval of time.

For example, a person makes laundry once a weak.

In this example, the event is represented by the laundry and the interval of time is once a weak

The velocity of a wave is defined as:

v = \nu \cdot \lambda  (1)

Where nu is the frequency and \lambda is the wavelenth

\lambda =  \frac{v}{\nu}  (2)

Notice from equation 2 that the wavelength is inversely proportional to the frequency (when the wavelength increases the frequency decreases).

In the case of electromagnetic waves, a short wavelength means a lower energy, as it can be seen in equation 4 (inversely proportional).

E = h\nu  (3)

E = \frac{hc}{\lambda} (4)

8 0
3 years ago
Read 2 more answers
An object has a weight of 500 on earth what is the mass of this object
erastova [34]

550! OBVY! lol! ope this helps1

7 0
3 years ago
The electrons of an atom store nuclear energy.
Sladkaya [172]
False. The nuclear energy is found within the nucleus. Electrons are located outside the nucleus.
4 0
3 years ago
Read 2 more answers
Other questions:
  • What happens to the sound of a train whistle as a train approaches and passes you? why?
    12·1 answer
  • What happens when an electron moves from a lower energy state to a higher energy state?
    8·2 answers
  • One gram of salt in 100 liters of water could be considered a _______________________ solution.
    15·2 answers
  • Examine the words and/or phrases below and determine the relationship among the majority of words/phrases. Choose the option tha
    12·1 answer
  • Why does pumping a soccer ball with an air pump increase the pressure inside the ball? the pump puts more gas particles inside t
    13·2 answers
  • 0.6% of 36 = ? Please answer today This is due tomorrow!,​
    15·1 answer
  • Which Richter magnitude range can be recorded by instruments but isn't felt? A. less than 2.9 B. 3.0 – 4.9 C. 5.0 – 5.9 D. 6.0 a
    14·2 answers
  • What is the measure of disorder in a system called? A. efficiency B. Enthalpy C. Work D. Entropy
    5·2 answers
  • Which of the following are benefits you can receive from exercising at higher heart rates? Question 5 options:
    9·2 answers
  • Suppose the collision between the packages is perfectly elastic. To what height does the package of mass m rebound?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!