Answer:
Particles would move more freely, while still staying close together depending on the shape of the liquid
Explanation:
Melting is the process of going from a solid to a liquid due to the increase in heat/energy. This increase in heat/energy increases the speed at which the atoms within the object moves. Lets say we had an ice cube. While it is a cube, the particles inside the cube are slow and compact, staying close together.
When enough energy is gained, this makes the particles begin to move faster, gaining heat and energy which results in the ice cube melting and moving more freely than normal.
I have no yuuuuu to say anything abt to
Voltmeter is the device that is used to measure the potential difference across the battery.
<h2>What are the usage of voltmeter?</h2><h3 /><h3>Usage of Voltmeter</h3>
Voltmeter is an instrument that measures voltages of both direct and alternating electric current. On a scale of voltmeter usually graduated in volts, millivolts (0.001 volt), or kilovolts (1,000 volts).
Voltmeter is connected in parallel form. It has a high resistance so that it takes negligible current from the circuit so we can conclude that Voltmeter is the device that is used to measure the potential difference across the battery.
Answer:
8.625 grams of a 150 g sample of Thorium-234 would be left after 120.5 days
Explanation:
The nuclear half life represents the time taken for the initial amount of sample to reduce into half of its mass.
We have given that the half life of thorium-234 is 24.1 days. Then it takes 24.1 days for a Thorium-234 sample to reduced to half of its initial amount.
Initial amount of Thorium-234 available as per the question is 150 grams
So now we start with 150 grams of Thorium-234





So after 120.5 days the amount of sample that remains is 8.625g
In simpler way , we can use the below formula to find the sample left

Where
is the initial sample amount
n = the number of half-lives that pass in a given period of time.
Chemical change because it cannot be reversed