Answer:
This process is known as doping. It can be done by adding either of two types of impurity to the crystal.
(A) By adding electron rich impurities i.e., group 15 elements to the silicon and germanium of group 14 elements.
hope it's helpful
Answer:
The electrode that removes ions from solution
Explanation:
Each electrochemical cell consists of an anode and a cathode. Oxidation occurs at the anode and reduction occurs at the cathode.
At the anode, ions move from the electrode into the solution while at the cathode ions move from the solution to the electrode.
At the cathode, metal ions accept electron(s) and become deposited on the electrode hence this electrode removes ions from solution. This is reduction.
Since you didn't give the actual volume (or any of the experimental values) I can only tell you how to do it. Do the calculation using the real (determined) volume of the flask. Then, re-do the calculation with v = 125ml. Take the two values and calculate % error; m = measured vol; g = guessed vol.
<span>[mW (m) - mW (g)]/mW (m) x 100% </span>
<span>(they want % error so, if it is negative, just get rid of the sign) </span>
We will get the molality from this formula:
Molality = no.of moles of solute / Kg of solvent
So first we need the no.of moles of KNO3 = the mass of KNO3 / molar mass of KNO3
no.of moles of KNO3 = 175 / 101.01 = 1.73 mol
By substitution in the molality formula:
∴ molality = 1.73 / (750/1000) = 2.3 Molal
Answer:
In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so quantity can neither be added nor be removed.
Explanation:
That is what I think on the subject