Answer:
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
Explanation:
Given that
Yield strength ,Sy= 240 MPa
Tensile strength = 310 MPa
Elastic modulus ,E= 110 GPa
L=380 mm
ΔL = 1.9 mm
Lets find strain:
Case 1 :
Strain due to elongation (testing)
ε = ΔL/L
ε = 1.9/380
ε = 0.005
Case 2 :
Strain due to yielding


ε '=0.0021
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
For computation of load strain due to testing should be less than the strain due to yielding.
Answer: q2 = -0.05286
Explanation:
Given that
Charge q1 = - 0.00325C
Electric force F = 48900N
The electric field strength experienced by the charge will be force per unit charge. That is
E = F/q
Substitute F and q into the formula
E = 48900/0.00325
E = 15046153.85 N/C
The value of the repelled second charge will be achieved by using the formula
E = kq/d^2
Where the value of constant
k = 8.99×10^9Nm^2/C^2
d = 5.62m
Substitutes E, d and k into the formula
15046153.85 = 8.99×10^9q/5.62^2
15046153.85 = 284634186.5q
Make q the subject of formula
q2 = 15046153.85/ 28463416.5
q2 = 0.05286
Since they repelled each other, q2 will be negative. Therefore,
q2 = -0.05286
Answer:
2649600 Joules
Explanation:
Efficiency = 40%
m = Mass of air = 92000 kg
v = Velocity of wind = 12 m/s
Kinetic energy is given by

The kinetic energy of the wind is 6624000 Joules
The wind turbine extracts 40% of the kinetic energy of the wind

The energy extracted by the turbine every second is 2649600 Joules
Nuclear fusion in the core tries to blow the star apart. Gravity holds it together. Whoever designed that system really knew what he was doing. I'm kinda grateful to him.
Answer
given,
For helium
Volume,V = 46 L
Pressure,P = 1 atm
Temperature,T = 25°C = 273 +25 = 298 K
R=0.0821 L . atm /mole.K
n₁ = ?
number of moles
we know
P V = n R T

n₁ = 1.89 moles
For oxygen
Volume,V = 12 L
Pressure,P = 1 atm
Temperature,T = 25°C = 273 +25 = 298 K
R=0.0821 L . atm /mole.K
n₂ = ?
number of moles
we know
P V = n R T

n₂ = 0.49 moles
Total volume of tank = 5 L
temperature of tank = 298 K
Partial pressure of helium


P₁ = 9.25 atm
Partial pressure of oxygen


P₂ = 2.39 atm
total pressure
P = P₁ + P₂
P = 9.25 + 2.39
P = 11.64 atm