Answer:
protons and neutrons are found in nucleus
The answer to this question would be: isotonic
An isotonic solution has a same tonicity/concentration to the cell. This kind of solution will not cause osmosis to occur so it wouldn't shrink or swell the cells. This is why an isotonic solution is safer for the cells. The normal saline solution is isotonic to human cells and used frequently in medicine to replace body fluid.
Answer:
Purpose: To become familiar with the techniques for separation of amixture of solids.
Explanation:
a mixture of pure substances. If you have a mixture of tennis ballsand marbles (not pure substances by the way), it would be easy toseparate the mixture. However, it is more difficult to separate asand (also not a pure substance) and salt mixture. Even with verygood tweezers and a magnifying glass, it would be extremelytedious. You could take advantage of the fact that salt dissolvesin water and sand does not. To separate iron powder from an ironand sand mixture you can take advantage of the magnetic propertiesof iron and separate the mixture.
To summarize a complete procedure for separating a mixture ofseveral substances, it is best to prepare a flow chart. A flowchartis a schematic representation of an algorithm or a stepwiseprocess, showing the steps as boxes of various kinds, and theirorder by connecting these with arrows. Flowcharts are used indesigning or documenting a process.
Answer: 12.78ml
Explanation:
Given that:
Volume of KOH Vb = ?
Concentration of KOH Cb = 0.149 m
Volume of HBr Va = 17.0 ml
Concentration of HBr Ca = 0.112 m
The equation is as follows
HBr(aq) + KOH(aq) --> KBr(aq) + H2O(l)
and the mole ratio of HBr to KOH is 1:1 (Na, Number of moles of HBr is 1; while Nb, number of moles of KOH is 1)
Then, to get the volume of a 0.149 m potassium hydroxide solution Vb, apply the formula (Ca x Va)/(Cb x Vb) = Na/Nb
(0.112 x 17.0)/(0.149 x Vb) = 1/1
(1.904)/(0.149Vb) = 1/1
cross multiply
1.904 x 1 = 0.149Vb x 1
1.904 = 0.149Vb
divide both sides by 0.149
1.904/0.149 = 0.149Vb/0.149
12.78ml = Vb
Thus, 12.78 ml of potassium hydroxide solution is required.
<h3>
Answer:</h3>
0.75 moles NaOH
<h3>
Explanation:</h3>
We are given;
Volume of NaOH solution = 2.5 Liters
Molarity of NaOH = 0.300 M
We are required to calculate the moles of NaOH
We need to establish the relationship between moles, molarity and volume of a solution.
That would be;
Concentration/molarity = Moles ÷ Volume
Therefore;
Moles = Concentration × Volume
Thus;
Moles of NaOH = 0.300 moles × 2.50 L
= 0.75 moles
Therefore, the number of moles of NaOH is 0.75 moles