Answer:
Because the light reflects multiple times until it gets to the Cassegrain focus.
Explanation:
The Cassegrain design can be seen in a reflecting telescope. In this type of design the light is collected by a concave mirror, and then intercepted by a secondary convex mirror, and sends it down to a central opening in the primary mirror (concave mirror), in which a detector is placed (Cassegrain focus)
Since, the light is reflected many times due to Cassegrain design, that leads to shorter telescopes.
As the density of the unknown substance is 0.68g/0.8ml = 0.85g/ml, it is less dense than the maple syrup at 1.33g/ml and will float.
Answer:
26.9 Pa
Explanation:
We can answer this question by using the continuity equation, which states that the volume flow rate of a fluid in a pipe must be constant; mathematically:
(1)
where
is the cross-sectional area of the 1st section of the pipe
is the cross-sectional area of the 2nd section of the pipe
is the velocity of the 1st section of the pipe
is the velocity of the 2nd section of the pipe
In this problem we have:
is the velocity of blood in the 1st section
The diameter of the 2nd section is 74% of that of the 1st section, so

The cross-sectional area is proportional to the square of the diameter, so:

And solving eq.(1) for v2, we find the final velocity:

Now we can use Bernoulli's equation to find the pressure drop:

where
is the blood density
are the initial and final pressure
So the pressure drop is:

Answer:
Vf= 3.435 m/s
Explanation:
Given:
Initial velocity Vi =0 m/s (starting from Rest position)
θ = 37⁰
Distance S = 1 m
To find: Final Velocity Vf=?
fist we have to find the down slope net acceleration a = g sin θ
a= 9.81 sin 37⁰ = 5.9 m/s²
By 3rd equation of motion
2 a S= Vf² - Vi²
Vf = Square root ( 2 × 5.9 m/s² × 1 + 0 m/s)
Vf = Square root (11.8)
Vf= 3.435 m/s