Answer:
The wavelength for the transition from n = 4 to n = 2 is<u> 486nm</u> and the name name given to the spectroscopic series belongs to <u>The Balmer series.</u>
Explanation
lets calculate -
Rydberg equation- 
where ,
is wavelength , R is Rydberg constant (
),
and
are the quantum numbers of the energy levels. (where
)
Now putting the given values in the equation,


Wavelength 
=
= 486nm
<u> Therefore , the wavelength is 486nm and it belongs to The Balmer series.</u>
Ba²⁺ + 2Cl⁻ + 2H⁺ + SO₄²⁻ = BaSO₄ (precipitate) + 2H⁺ + 2Cl⁻
Ba²⁺ + SO₄²⁻ = BaSO₄
The crushed tablets would stop bubbling/fuzzing first because it has a smaller surface area which means that it would dissolve before the uncrushed tablets which has a larger surface area.
There are several things that can help scientists evaluate which category something belongs to. The similarity in features is one of them. If two skulls looked alike, they were probably species of the same evolutionary category. For example say humans and monkeys rather than humans and dogs.
Similarly fossils have helped scientists categorise species. Study of the chromosomes (in cases with available chromosomes) can help scientists figure out a lot about the subjects and categorise them.
Answer:
E) NaF and SrO
Explanation:
The ionic bonding occurs between atoms with a great difference in electronegativity. This usually happens between a metal and a non-metal.
<em>In which pair do both compounds exhibit predominantly ionic bonding? </em>
A) KCl and CO₂. NO. C and O are non-metals and present covalent bonding.
B) SO₂ and BaF₂. NO. S and O are non-metals and present covalent bonding.
C) F₂ and N₂O. NO. Both compounds contain non-metals and present covalent bonding.
D) N₂O₃ and Rb₂O. NO. N and O are non-metals and present covalent bonding.
E) NaF and SrO. YES. Na and Sr are metals while F and O are non-metals.