Answer:
Current, I = 1000 A
Explanation:
It is given that,
Length of the copper wire, l = 7300 m
Resistance of copper line, R = 10 ohms
Magnetic field, B = 0.1 T

Resistivity, 
We need to find the current flowing the copper wire. Firstly, we need to find the radius of he power line using physical dimensions as :




r = 0.00199 m
or

The magnetic field on a current carrying wire is given by :



I = 1000 A
So, the current of 1000 A is flowing through the copper wire. Hence, this is the required solution.
Answer:
Explanation:
As it’s difficult to catch it from up.
Gravitational force will pull us when we jump.
If gravity was not there, he could catch the ball. But he will float in the sky after that.
That’s the answer
Answer:
a) 
b) 
c) 
Explanation:
From the question we are told that
Distance to Betelgeuse 
Mass of Rocket 
Total Time in years traveled 
Total energy used by the United States in the year 2000 
Generally the equation of speed of rocket v mathematically given by


where




Therefore


b)
Generally the equation of the energy E required to attain prior speed mathematically given by


c)Generally the equation of the energy
required to accelerate the rocket mathematically given by



The runner has initial velocity vector

and acceleration vector

so that her velocity at time
is

She runs directly east when the vertical component of
is 0:

It's not clear what you're supposed to find at this particular time... possibly her position vector? In that case, assuming she starts at the origin, her position at time
would be

so that after 10.4 s, her position would be

which is 19.9 m away from her starting position.