My answer -
<span> a
molecule The clues are that it is elements, so that means atoms, and that it is
in a fixed proportion like a molecular formula.
Happy to help you have a great day
</span>
Answer:
The magnitude of the angular acceleration ∝ =
}[/tex]
Explanation:
The angular acceleration ∝ is equal to the torque (radius multiplied by force) divided by the mass times the square of the radius. The magnitude of angular acceleration ∝ will have the equation above but we have to replace the mass in the equation by 2.8kg as stated.
My calculator is about 1cm thick, 7cm wide, and 13cm long.
Its volume is (length) (width) (thick) = (13 x 7 x 1) = 91 cm³ .
The question wants me to assume that the density of my calculator
is about the same as the density of water. That doesn't seem right
to me. I could check it easily. All I have to do is put my calculator
into water, watch to see if sinks or floats, and how enthusiastically.
I won't do that. I'll accept the assumption.
If its density is actually 1 g/cm³, then its mass is about 91 grams.
The choices of answers confused me at first, until I realized that
the choices are actually 1g, 10² g, 10⁴ g, and 10⁶ g.
My result of 91 grams is about 100 grams ... about 10² grams.
Your results could be different.
Answer:
Power, P = 600 watts
Explanation:
It is given that,
Mass of sprinter, m = 54 kg
Speed, v = 10 m/s
Time taken, t = 3 s
We need to find the average power generated. The work done divided by time taken is called power generated by the sprinter i.e.

Work done is equal to the change in kinetic energy of the sprinter.


P = 900 watts
So, the average power generated by the sprinter is 900 watts. Hence, this is the required solution.
Answer: b) they are the areas where Earth's magnetic field is weakest
Explanation:
According to classical physics, a magnetic field always has two associated magnetic poles (north and south), the same happens with magnets. This is because for <em>classical physics</em>, naturally, magnetic monopoles can not exist.
In this context, Earth is similar to a magnetic bar with a north pole and a south pole. This means, the axis that crosses the Earth from pole to pole is like a big magnet.
Now, by convention, on all magnets the north pole is where the magnetic lines of force leave the magnet and the south pole is where the magnetic lines of force enter the magnet. Then, for the case of the Earth, the north pole of the magnet is located towards the geographic south pole and the south pole of the magnet is near the geographic north pole.
Being the magnetic poles the places where the Earth's magnetic field is weakest. And it is for this reason, moreover, that the magnetic field lines enter the Earth through its magnetic south pole (which is the geographic north pole).