1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
3 years ago
5

Calculate the kinetic energy of a motorcycle of mass 60kg travelling at a velocity of 40km/h​

Physics
1 answer:
ELEN [110]3 years ago
5 0

Answer:

1848.15J

Explanation:

KE =1/2 mv^2

Mass = 60kg, velocity =40km/h =11.11m/s

Hence

KE =30 x(11.1)^2 /2 = 1848.15J

You might be interested in
PLZ HELP ME FAST A relationship between two variables is called:
Irina18 [472]

Answer:

B- Correlation

Explanation:

6 0
2 years ago
Read 2 more answers
A ball is dropped from a height of 20 meters. At what height does the ball have a velocity of 10 meters/second?
borishaifa [10]

Answer:B

Explanation:

Initial velocity, u=0m/s

Distance,s=20m

a=+g=9.8m/s*s

Using v*v=u*u+2gs

v*v=0+2*9.8*20

v*v=392

v=19.8

When s=20m, v = 19.8m/s

Therefore when v = 10m/s, s= 10*20/19.8

s =10.1m

6 0
3 years ago
A block of unknown mass is attached to a spring with a spring constant of 7.00 N/m 2 and undergoes simple harmonic motion with a
KatRina [158]

Answers:

a) 0.80 kg

b) 2.12 s

c) 1.093 m/s^{2}

Explanation:

We have the following data:

k=7 N/m is the spring constant

A=12.5 cm \frac{1 m}{100 cm}=0.125 m is the amplitude of oscillation

V=32 cm/s=0.32 m/s is the velocity of the block when x=\frac{A}{2}=0.0625 m

Now let's begin with the answers:

<h3>a) Mass of the block</h3>

We can solve this by the conservation of energy principle:

U_{o}+K_{o}=U_{f}+K_{f} (1)

Where:

U_{o}=k\frac{A^{2}}{2} is the initial potential energy

K_{o}=0  is the initial kinetic energy

U_{f}=k\frac{x^{2}}{2} is the final potential energy

K_{f}=\frac{1}{2} m V^{2} is the final kinetic energy

Then:

k\frac{A^{2}}{2}=k\frac{x^{2}}{2}+\frac{1}{2} m V^{2} (2)

Isolating m:

m=\frac{k(A^{2}-x^{2})}{V^{2}} (3)

m=\frac{7 N/m((0.125 m)^{2}-(0.0625 m)^{2})}{(0.32 m/s)^{2}} (4)

m=0.80 kg (5)

<h3>b) Period</h3>

The period T is given by:

T=2 \pi \sqrt{\frac{m}{k}} (6)

Substituting (5) in (6):

T=2 \pi \sqrt{\frac{0.80 kg}{7 N/m}} (7)

T=2.12 s (8)

<h3>c) Maximum acceleration</h3>

The maximum acceleration a_{max} is when the force is maximum F_{max}, as well :

F_{max}=m.a_{max}=k.x_{max} (9)

Being x_{max}=A

Hence:

m.a_{max}=kA (10)

Finding a_{max}:

a_{max}=\frac{kA}{m} (11)

a_{max}=\frac{(7 N/m)(0.125 m)}{0.80 kg} (12)

Finally:

a_{max}=1.093 m/s^{2}

5 0
3 years ago
You do 120 j of work while pulling your sister back on a swing, whose chain is 5.10 m long. you start with the swing hanging ver
Goryan [66]
The work done to pull the sister back on the swing is equal to the increase in potential energy of the sister:
W= \Delta U = mg \Delta h (1)

where m is the sister's mass, g is the gravitational acceleration and \Delta h is the increase in altitude of the sister with respect to its initial position.

By calling \theta the angle of the chain with respect to the vertical, the increase in altitude is given by
\Delta h = L - L \cos \theta = L(1 - \cos \theta) (2)
where L is the length of the chain.

Putting (2) inside (1), we find
W= m g L (1 - \cos \theta)
from which we can find the mass of the sister:
m =  \frac{W}{g L (1 - \cos \theta)} =  \frac{120 J}{(9.81 m/s^2)(5.10 m)(1- \cos 32.0^{\circ})} =15.8 kg
5 0
2 years ago
On a typical clear day, the atmospheric electric field points downward and has a magnitude of approximately 103 N/C. Compare the
Nina [5.8K]

Answer:

a) FE = 0.764FG

b) a = 2.30 m/s^2

Explanation:

a) To compare the gravitational and electric force over the particle you calculate the following ratio:

\frac{F_E}{F_G}=\frac{qE}{mg}              (1)

FE: electric force

FG: gravitational force

q: charge of the particle = 1.6*10^-19 C

g: gravitational acceleration = 9.8 m/s^2

E: electric field = 103N/C

m: mass of the particle = 2.2*10^-15 g = 2.2*10^-18 kg

You replace the values of all parameters in the equation (1):

\frac{F_E}{F_G}=\frac{(1.6*10^{-19}C)(103N/C)}{(2.2*10^{-18}kg)(9.8m/s^2)}\\\\\frac{F_E}{F_G}=0.764

Then, the gravitational force is 0.764 times the electric force on the particle

b)

The acceleration of the particle is obtained by using the second Newton law:

F_E-F_G=ma\\\\a=\frac{qE-mg}{m}

you replace the values of all variables:

a=\frac{(1.6*10^{-19}C)(103N/C)-(2.2*10^{-18}kg)(9.8m/s^2)}{2.2*10^{-18}kg}\\\\a=-2.30\frac{m}{s^2}

hence, the acceleration of the particle is 2.30m/s^2, the minus sign means that the particle moves downward.

7 0
2 years ago
Other questions:
  • A student increases the temperature of a 300 cm^3 balloon from 30c to 60c. what will the new volume of the ballon be
    11·2 answers
  • Which changes will increase the rate of reaction during combustion? decreasing the area of contact between the reactants adding
    15·2 answers
  • What causes a bolt of lightning
    7·2 answers
  • A diamond is cut such that the angle between its top surface and its bottom surface is α. For α=45∘, find the largest possible v
    14·1 answer
  • Is orange juice in an orange potential energy or kinetic energy?
    12·2 answers
  • A circuit consists of a 9.0 v battery connected to three resistors (52 , 17 , and 140 ) in series. (a) find the current that flo
    9·1 answer
  • 4. Jed drops a 10 kg box off of the Eiffel Tower. After 2.6 seconds, how fast is the box moving? (Neglect air resistance.)
    6·1 answer
  • In a given chemical reaction the energy of the products is less than the energy of the reactants which statement is true for thi
    12·1 answer
  • Why does Quito, Equator has very little changes to the daylight hours<br> throughout the year?
    11·1 answer
  • Which season is signaled by average lower temperature and indirect, angled sunlight?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!