Answer:
111011
Explanation:
59/2 = 29, remainder is 1
29/2 = 14, remainder is 1
14/2 = 7, remainder is 0
7/2 = 3, remainder is 1
3/2 = 1, remainder is 1
1/2 = 0, remainder is 1
To be effective, an exercise program must have an aerobic
form, portion for strength enhancement, and a stretching part. These three
things are essential because they each target specific improvements in your
body. For example, aerobics can help you maintain your body’s fitness or make
it better. This usually targets your heart rate and ensures that you burn fat
while doing so. Second is strength enhancement; this will make sure that your
body becomes better – not just in a feeble state. Lastly is stretching, your
muscles are like rubber bands. You cannot end or start your exercise program
without stretching simply because they can damage your muscles as well. Aside
from this, stretching can stop you from shocking your body into a physical
activity, which may cause you to lose consciousness or have undue stress and fatigue.
Answer:
(a) A = 0.0800 m, λ = 20.9 m, f = 11.9 Hz
(b) 250 m/s
(c) 1250 N
(d) Positive x-direction
(e) 6.00 m/s
(f) 0.0365 m
Explanation:
(a) The standard form of the wave is:
y = A cos ((2πf) t ± (2π/λ) x)
where A is the amplitude, f is the frequency, and λ is the wavelength.
If the x term has a positive coefficient, the wave moves to the left.
If the x term has a negative coefficient, the wave moves to the right.
Therefore:
A = 0.0800 m
2π/λ = 0.300 m⁻¹
λ = 20.9 m
2πf = 75.0 rad/s
f = 11.9 Hz
(b) Velocity is wavelength times frequency.
v = λf
v = (20.9 m) (11.9 Hz)
v = 250 m/s
(c) The tension is:
T = v²ρ
where ρ is the mass per unit length.
T = (250 m/s)² (0.0200 kg/m)
T = 1250 N
(d) The x term has a negative coefficient, so the wave moves to the right (positive x-direction).
(e) The maximum transverse speed is Aω.
(0.0800 m) (75.0 rad/s)
6.00 m/s
(f) Plug in the values and find y.
y = (0.0800 m) cos((75.0 rad/s) (2.00 s) − (0.300 m⁻¹) (1.00 m))
y = 0.0365 m
D multiply force
Have a wonderful day !
Answer:
The magnitude of the applied torque is
(e) is correct option.
Explanation:
Given that,
Mass of object = 3 kg
Radius of gyration = 0.2 m
Angular acceleration = 0.5 rad/s²
We need to calculate the applied torque
Using formula of torque
Here, I = mk²
Put the value into the formula
Hence, The magnitude of the applied torque is