Answer:
Explanation:
Length if the bar is 1m=100cm
The tip of the bar serves as fulcrum
A force of 20N (upward) is applied at the tip of the other end. Then, the force is 100cm from the fulcrum
The crate lid is 2cm from the fulcrum, let the force (downward) acting on the crate be F.
Using moment
Sum of the moments of all forces about any point in the plane must be zero.
Let take moment about the fulcrum
100×20-F×2=0
2000-2F=0
2F=2000
Then, F=1000N
The force acting in the crate lid is 1000N
Option D is correct
Answer:
please do well to ask questions in English. This will help people provide you answers ASAP. Thank you
The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .