1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mina [271]
3 years ago
14

We can reasonably model a 90-W incandescent lightbulb as a sphere 7.0cm in diameter. Typically, only about 5% of the energy goes

to visible light; the rest goes largely to nonvisible infrared radiation.
A) What is the visible light intensity at the surface of the bulb?
B) What is the amplitude of the electric field at this surface, for a sinusoidal wave with this intensity?
C) What is the amplitude of the magnetic field at this surface, for a sinusoidal wave with this intensity?
Physics
1 answer:
Ronch [10]3 years ago
7 0

Answer:

292.3254055 W/m²

469.26267 V/m

1.56421\times 10^{-6}\ T

Explanation:

P = Power of bulb = 90 W

d = Diameter of bulb = 7 cm

r = Radius = \frac{d}{2}=\frac{7}{2}=3.5\ cm

\epsilon_0 = Permittivity of free space = 8.85\times 10^{-12}\ F/m

c = Speed of light = 3\times 10^8\ m/s

The intensity is given by

I=\frac{P}{A}\\\Rightarrow I=\frac{90}{4\pi 0.035^2}\\\Rightarrow I=5846.50811\ W/m^2

5% of this energy goes to the visible light so the intensity is

I=0.05\times 5846.50811\\\Rightarrow I=292.3254055\ W/m^2

The visible light intensity at the surface of the bulb is 292.3254055 W/m²

Energy density of the wave is

u=\frac{1}{2}\epsilon_0E^2

Energy density is also given by

\frac{I}{c}=\frac{1}{2}\epsilon_0E^2\\\Rightarrow E=\sqrt{\frac{2I}{c\epsilon_0}}\\\Rightarrow E=\sqrt{\frac{2\times 292.3254055}{3\times 10^8\times 8.85\times 10^{-12}}}\\\Rightarrow E=469.26267\ V/m

The amplitude of the electric field at this surface is 469.26267 V/m

Amplitude of a magnetic field is given by

B=\frac{E}{c}\\\Rightarrow B=\frac{469.26267}{3\times 10^8}\\\Rightarrow B=1.56421\times 10^{-6}\ T

The amplitude of the magnetic field at this surface is 1.56421\times 10^{-6}\ T

You might be interested in
5- A 2500g object is pushed with 55N for 12m in 11s, there was a force of friction of 30N.
Assoli18 [71]

Answer:

1kg =1000g

2.5kg

D=12m

t=11s

F=2.5KG

Explanation:

work done =f.d

=2.5×12

=30Nm

55-30

average speed

final - initial

divide by time t(s)

3 0
2 years ago
3.00Kg toy falls from a height of 1.00m. What is the kinetic energy just before the ground?
ivanzaharov [21]

Answer:K E = 29.4 J

Explanation:

7 0
3 years ago
The kinetic energy of a 10 Kg ball rolling at 10 meters per second is how many joules
Ulleksa [173]

Answer: 500 joules

Explanation:

Given that

Mass of ball = 10kg

kinetic energy = ?

velocity of the ball = 10m/s

Kinetic energy is the energy possessed by a moving object. It is measured in joules, and depends on the mass (m) of the object and the velocity (v) by which it moves

i.e K.E = 1/2mv²

K.E = 1/2 x 10kg x (10m/s)²

K.E = 0.5 x 10kg x (10m/s)²

K.E = 5 x 100

K.E = 500 joules

Thus, the kinetic energy of the ball is 500 joules

6 0
4 years ago
What do it mean by the value of gravitational constant is 6.67×10^-11Nm^2/kg^2<br>​
luda_lava [24]

Answer:

gravitational constant value means it was never change in any particular area of the Earth

8 0
2 years ago
A golfer is on the edge of a 12.5 m bluff overlooking the 18th hole which is located 60 m from the base of the bluff. She launch
Lina20 [59]

Answer:

The ball impact velocity i.e(velocity right before landing) is 6.359 m/s

Explanation:

This problem is related to parabolic motion and can be solved by the following equations:

x=V_{o}cos \theta t----------------------(1)

y=y_{o}+V_{o} sin \theta t - \frac{1}{2}gt^{2}---------(2)

V=V_{o}-gt ----------------------- (3)

Where:

x = m is the horizontal distance travelled by the golf ball

V_{o} is the golf ball's initial velocity

\theta=0\° is the angle (it was  a horizontal shot)

t is the time

y is the final height of the ball

y_{o} is the initial height of the ball

g is the acceleration due gravity

V is the final velocity of the ball

Step 1: finding t

Let use the equation(2)

t=\sqrt{\frac{2 y_{o}}{g}}

t=\sqrt{\frac{2 (12.5 m)}{9.8 m/s^{2}}}

t=1.597s

Substituting (6) in (1):

67.1 =V_{o} cos(0\°) 1.597-------------------(4)

Step 2:  Finding V_{o}:

From equation(4)

67.1 =V_{o}(1) 1.597

V_0 = \frac{6.71}{1.597}

V_{o}=42.01 m/s (8)  

Substituting V_{o} in (3):

V=42.01 -(9.8)(1.597)

v =42 .01 - 15.3566  

V=26.359 m/s

5 0
3 years ago
Other questions:
  • The voltage of electricity traveling away from a power plant is very high. How high may it be? Why is the voltage so high?
    10·1 answer
  • Consider a magnesium wire (σ = 2.2 ✕ 107 Ω−1 · m−1) with a cross-sectional area of 1 mm2 (similar to your connecting wires) and
    10·1 answer
  • Two people carry a heavy electric motor by placing it on a light board 1.80 m long. One person lifts at one end with a force of
    10·1 answer
  • The gravitational force between two asteroids is 1,000,000 n. what will the force be if the distance between the asteroids is do
    13·1 answer
  • A chain reaction results when a uranium atom is struck by a/an ______________released by a nearby Uranium atom undergoing fissio
    11·1 answer
  • 8. A book is pushed a distance of 0.78 m by a force that gives the book an acceleration of 1.54 m/s². If 1.56 J of work is done
    15·1 answer
  • 9
    6·1 answer
  • A wire carries a 11.3-mA current along the +x-axis through a magnetic field = (16.2 + 2.4 ĵ) T. If the wire experiences a force
    8·1 answer
  • Science question: How do humans use the magnetic field for navigation?
    7·1 answer
  • What is the number of 0 mean​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!