Answer:
x-component of velocity: 7.5 m/s
y-component of velocity: 13 m/s
Explanation:
This problem is pure trigonometry. Assuming you know trig, there are only a couple of steps to solving this problem. First, split the velocity into components; recall that any vector not directed along an axis has x and y components. Then, remember that sinΘ = opposite/hypotenuse. Applying this to your scenario, you get sin60° = vy/15. Multiplying this out gives you vy=15sin60. Put this into a calculator (make sure it's set to degree mode because the angle in this problem is in degrees) and you should get 12.99, which you can round up to 13 m/s. This is the velocity in the y-direction.
The procedure to find the x-velocity is very similar, but instead of using sine, we will use the cosine of theta. Recall that cosΘ=adjacent/hypotenuse. Once again plugging this scenario's numbers into that, you end up with cos60 = vₓ/15. Multiplying this out gives you vₓ = 15cos60. Once again, plug this into your calculator. 7.5 m/s should be your answer. This is the velocity in the x-direction.
By the way, a quick way to find the components of a vector, whether it's velocity, force, or whatever else, is to use these functions. Generally, if the vector points somewhere that's not along an axis, you can use this rule. The x-component of the vector is equal to hypotenuse*cosΘ and the y-component of the vector is equal to hypotenuse*sinΘ.
It's true IF ' m ' stands for mass and ' v ' stands for acceleration. Otherwise it's false.
M = 10.0 g, the mass of the iron sample
ΔT = 75 - 25.2 = 49.5°C, the decrease in temperature
c = 0.449 J/(g-°C), the specific heat of iron
The heat released is
Q = m*c*ΔT
= (10.0 g)*(0.449 J/(g-°C))*(49.5 C)
= 222.255 J
Answer: 222.3 J (nearest tenth)
You would have to place your sensor above earth's atmosphere because it blocks out nearly all x-rays. this is why we have the Chandra observatory
hope this helps
kinetic energy or potential energy
sorry idek i learned this like 2 years ago