The speed of a proton after it accelerates from rest through a potential difference of 350 V is
.
Initial velocity of the proton 
Given potential difference 
let's assume that the speed of the proton is
,
Since the proton is accelerating through a potential difference, proton's potential energy will change with time. The potential energy of a particle of charge
when accelerated with a potential difference
is,

Due to Work-Energy Theorem and Conservation of Energy - <em>If there is no non-conservative force acting on a particle then loss in Potential energy P.E must be equal to gain in Kinetic Energy K.E</em> i.e

If the initial and final velocity of the proton is
and
respectively then,
change in Kinetic Energy 
change in Potential Energy 
from conservation of energy,

so, 

To read more about the conservation of energy, please go to brainly.com/question/14668053
Volocity can be the wave length of the speed like the volume.
Hi there!
We can begin by deriving the equation for how long the ball takes to reach the bottom of the cliff.

There is NO initial vertical velocity, so:

Rearrange to solve for time:

Plug in the given height and acceleration due to gravity (g ≈ 9.8 m/s²)

Now, use the following for finding the HORIZONTAL distance using its horizontal velocity:

I believe this would be an example of Mary's velocity. We have her speed and direction which is all you need to find velocity.
Answer:
0
Explanation:
Given the following :
Height of wall = 19.2 m
Time taken to hit the ground = 5 seconds
Acceleration due to gravity (g) = 9.8m/s ( downward motion)
The initial velocity of the object refers to the Velocity of the object at time t = 0
Initial Velocity = g × time
Initial Velocity = 9.8 × 0 = 0