Insulators- fur, plastic, lots of non metals
Conductors- metals, wire, most metals
:)
Answer:
μ = 0.109
Explanation:
Draw a free body diagram of the crate. There are four forces:
Weight force mg pulling down.
Normal force N pushing up.
Applied force P pulling at θ above the horizontal.
Friction force Nμ pushing to the left.
Sum of the forces in the y direction:
∑F = ma
N + P sin θ − mg = 0
N = mg − P sin θ
Sum of the forces in the x direction:
∑F = ma
P cos θ − Nμ = ma
P cos θ − ma = Nμ
μ = (P cos θ − ma) / N
μ = (P cos θ − ma) / (mg − P sin θ)
Given:
P = 585 N
θ = 28.0°
m = 125 kg
a = 3.30 m/s²
μ = (585 cos 28.0° − 125 kg × 3.30 m/s²) / (125 kg × 9.8 m/s² − 585 sin 28.0°)
μ = 0.109
vf = 10 m/s. A ball with mass of 4kg and a impulse given of 28N.s with a intial velocity of 3m/s would have a final velocity of 10 m/s.
The key to solve this problem is using the equation I = F.Δt = m.Δv, Δv = vf - vi.
The impulse given to the ball with mass 4Kg is 28 N.s. If the ball were already moving at 3 m/s, to calculate its final velocity:
I = m(vf - vi) -------> I = m.vf - m.vi ------> vf = (I + m.vi)/m ------> vf = I/m + vi
Where I 28 N.s, m = 4 Kg, and vi = 3 m/s
vf = (28N.s/4kg) + 3m/s = 7m/s + 3m/s
vf = 10 m/s.
.
It’s a vector quantity, which means it possesses both magnitude and direction. So the SI unit would be B)kg•m/s