Answer:
A light year is the distance light travels in a year. ... And an astronomical unit is the average distance between the earth and the sun. So the distance to the sun is by definition one AU. A parsec is the distance at which one astronomical unit subtends an angle of one second of arc.
Answer:
<h2>A. 180 miles</h2><h2>B. 60 miles</h2><h2 />
Explanation:
In this problem, we are required to solve for the total distance that the car travelled. and the displacement
A) the distance travelled by car
this can be gotten by summing all the distances the car has travelled.
i,e total distance= 60 miles+120 miles
total distance= 180 miles
B) the displacement of the car
the displacement can be gotten by subtracting the final distance from the initial distance
final distance = 120 miles
initial distance= 60 miles
displacement= 120-60= 60 miles
Answer:
The final acceleration of the car, v = 70 m/s
Explanation:
Given,
The initial velocity of the car, u = 20 m/s
The acceleration of the car, a = 10 m/s²
The time period of travel, t = 5 s
Using the I equations of motion
v = u + at
= 20 + 10(5)
= 20 + 50
= 70 m/s
Hence, the final acceleration of the car, v = 70 m/s
Answer:
a = 7.5 m / s²
Explanation:
For this exercise let's use Newton's second law, let's create a coordinate system with the x axis parallel to the plane and the y axis perpendicular to the plane
Y axis
N - W cos θ = 0
N = mg cos θ
X axis
W sin θ = m a
mg sin θ = m a
a = g sin θ
let's calculate
a = 9.8 cos 40
a = 7.5 m / s²