Answer:
The activation energy of an endothermic reaction
A) must be greater than the required △H
Explanation:
endothermic reaction : Are those which absorbs heat from the surrounding
.<em>This energy provide activation energy for the reaction to occur</em>.
So activation energy becomes more than enthalpy.
Answer:
A. 0.000128 M is the solubility of M(OH)2 in pure water.
B.
is the solubility of
in a 0.202 M solution of
.
Explanation:
A
Solubility product of generic metal hydroxide = 

S 2S
The expression of a solubility product is given by :
![K_{sp}=[M^{2+}][OH^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BM%5E%7B2%2B%7D%5D%5BOH%5E-%5D%5E2)

Solving for S:

0.000128 M is the solubility of M(OH)2 in pure water
B
Concentration of
= 0.202 M
Solubility product of generic metal hydroxide = 

S 2S
So, ![[M^{2+}]=0.202 M+S](https://tex.z-dn.net/?f=%5BM%5E%7B2%2B%7D%5D%3D0.202%20M%2BS)
The expression of a solubility product is given by :
![K_{sp}=[M^{2+}][OH^-]^2](https://tex.z-dn.net/?f=K_%7Bsp%7D%3D%5BM%5E%7B2%2B%7D%5D%5BOH%5E-%5D%5E2)

Solving for S:

is the solubility of
in a 0.202 M solution of
.
Answer:
12.213 minutes will be taken for 120 g-Thalium-208 to decay to 75 grams.
Explanation:
Radioactive isotopes decay exponentially in time, the mass of the isotope (
), in grams, is described by the formula in time (
), in minutes:
(1)
Where:
- Initial mass of the isotope, in grams.
- Time constant, in minutes.
In addition, the time constant associated with the isotope decay can be described in terms of half-life (
), in minutes:
(2)
If we know that
,
and
, then the time taken by the isotope is:






12.213 minutes will be taken for 120 g-Thalium-208 to decay to 75 grams.
Answer:
it is probably acrylic or latex
Explanation:
Answer:
Water has high surface tension, and water molecules stick together
Explanation: